Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-25T04:45:45.408Z Has data issue: false hasContentIssue false

Evidence of alpha 7 nicotinic acetylcholine receptor expression in retinal pigment epithelial cells

Published online by Cambridge University Press:  08 October 2010

VICTORIA MANEU
Affiliation:
Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain Instituto Teófilo Hernando de I+D del Medicamento, Universidad Autónoma de Madrid, Madrid, Spain
GUILLERMO GERONA
Affiliation:
Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain
LAURA FERNÁNDEZ
Affiliation:
Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
NICOLÁS CUENCA
Affiliation:
Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
PEDRO LAX*
Affiliation:
Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Alicante, Spain
*
*Address correspondence and reprint requests to: Pedro Lax, Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Carretera San Vicente del Raspeig s/n. 03690 San Vicente del Raspeig, Alicante, Spain. E-mail: [email protected]

Abstract

Some evidence suggests that retinal pigment epithelium (RPE) can express nicotinic acetylcholine receptors (nAChRs) as described for other epithelial cells, where nAChRs have been involved in processes such as cell development, cell death, cell migration, and angiogenesis. This study is designed to determine the expression and activity of α7 nAChRs in RPE cells. Reverse transcriptase (RT)-PCR was performed to test the expression of nicotinic α7 subunit in bovine RPE cells. Protein expression was determined by Western blot and by immunocytochemistry. Expression of nicotinic α7 subunits was also analyzed in cryostat sections of albino rat retina. Changes in protein expression were tested under hypoxic conditions. Functional nAChRs were studied by examining the Ca2+ transients elicited by nicotine and acetylcholine stimulation in fura-2–loaded cells. Expression of endogenous modulators of nAChRs was analyzed by RT-PCR and Western blot in retina and RPE. Cultured bovine RPE cells expressed nicotinic receptors containing α7 subunit. RT-PCR amplified the expected specific α7 fragment. Western blotting showed expression at the protein level, with a specific band being found at 57 kDa in both cultured and freshly isolated RPE cells. Expression of nAChRs was confirmed for cultured cells by immunofluorescence. Immunohistochemistry confirmed α7 receptor expression in rat RPE retina. α7 receptor expression was down-regulated by long-term hypoxia. A small subpopulation of RPE cultured cells showed functional nAChRs, as evidenced by the selective response elicited by nicotine and acetylcholine stimulation. Expression of the endogenous nicotinic receptors’ modulator lynx1 was confirmed in bovine retina and RPE, and expression of lynx1 and other endogenous nicotinic receptor modulators (SLURP1 and RGD1308195) were also confirmed in rat retina. These results suggest that nAChRs could have a significant role in RPE, which may not be related to the traditional role in nerve transmission but could more likely be related to the nonneuronal cholinergic system in the eye.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arredondo, J., Chernyavsky, A.I. & Grando, S.A. (2007). Overexpression of SLURP-1 and -2 alleviates the tumorigenic action of tobacco-derived nitrosamine on immortalized oral epithelial cells. Biochemical Pharmacology 74, 13151319.CrossRefGoogle ScholarPubMed
Arredondo, J., Chernyavsky, A.I., Jolkovsky, D.L., Webber, R.J. & Grando, S.A. (2006). SLURP-2: A novel cholinergic signaling peptide in human mucocutaneous epithelium. Journal of Cellular Physiology 208, 238245.CrossRefGoogle ScholarPubMed
Arredondo, J., Chernyavsky, A.I., Webber, R.J. & Grando, S.A. (2005). Biological effects of SLURP-1 on human keratinocytes. The Journal of Investigative Dermatology 125, 12361241.CrossRefGoogle ScholarPubMed
Benhammou, K., Lee, M., Strook, M., Sullivan, B., Logel, J., Raschen, K., Gotti, C. & Leonard, S. (2000). [(3)H]Nicotine binding in peripheral blood cells of smokers is correlated with the number of cigarettes smoked per day. Neuropharmacology 39, 28182829.CrossRefGoogle Scholar
Blank, U., Ruckes, C., Clauss, W. & Weber, W.M. (1997). Effects of nicotine on human nasal epithelium: Evidence for nicotinic receptors in non-excitable cells. Pflugers Arch 434, 581586.CrossRefGoogle ScholarPubMed
Chakravarthy, U., Evans, J. & Rosenfeld, P.J. (2010). Age related macular degeneration. BMJ 340, 526530.Google ScholarPubMed
Chernyavsky, A.I., Arredondo, J., Marubio, L.M. & Grando, S.A. (2004). Differential regulation of keratinocyte chemokinesis and chemotaxis through distinct nicotinic receptor subtypes. Journal of Cell Science 117, 56655679.CrossRefGoogle ScholarPubMed
Criado, M., Dominguez, T.E., Carrasco-Serrano, C., Smillie, F.I., Juiz, J.M., Viniegra, S. & Ballesta, J.J. (1997). Differential expression of alpha-bungarotoxin-sensitive neuronal nicotinic receptors in adrenergic chromaffin cells: A role for transcription factor Egr-1. The Journal of Neuroscience 17, 65546564.CrossRefGoogle ScholarPubMed
de Fiebre, N.C. & de Fiebre, C.M. (2005). alpha7 Nicotinic acetylcholine receptor knockout selectively enhances ethanol-, but not beta-amyloid-induced neurotoxicity. Neuroscience Letters 373, 4247.CrossRefGoogle Scholar
Dmitrieva, N.A., Strang, C.E. & Keyser, K.T. (2007). Expression of alpha 7 nicotinic acetylcholine receptors by bipolar, amacrine, and ganglion cells of the rabbit retina. The Journal of Histochemistry and Cytochemistry 55, 461476.CrossRefGoogle ScholarPubMed
Ducsay, C.A., Hyatt, K., Mlynarczyk, M., Root, B.K., Kaushal, K.M. & Myers, D.A. (2007). Long-term hypoxia modulates expression of key genes regulating adrenomedullary function in the late gestation ovine fetus. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 293, R1997R2005.CrossRefGoogle ScholarPubMed
Fabian-Fine, R., Skehel, P., Errington, M.L., Davies, H.A., Sher, E., Stewart, M.G. & Fine, A. (2001). Ultrastructural distribution of the alpha7 nicotinic acetylcholine receptor subunit in rat hippocampus. The Journal of Neuroscience 21, 79938003.CrossRefGoogle ScholarPubMed
Favre, B., Plantard, L., Aeschbach, L., Brakch, N., Christen-Zaech, S., de Viragh, P.A., Sergeant, A., Huber, M. & Hohl, D. (2007). SLURP1 is a late marker of epidermal differentiation and is absent in Mal de Meleda. The Journal of Investigative Dermatology 127, 301308.CrossRefGoogle ScholarPubMed
Fucile, S., Renzi, M., Lauro, C., Limatola, C., Ciotti, T. & Eusebi, F. (2004). Nicotinic cholinergic stimulation promotes survival and reduces motility of cultured rat cerebellar granule cells. Neuroscience 127, 5361.CrossRefGoogle ScholarPubMed
Gotti, C. & Clementi, F. (2004). Neuronal nicotinic receptors: From structure to pathology. Progress in Neurobiology 74, 363396.CrossRefGoogle ScholarPubMed
Grando, S.A. (2008). Basic and clinical aspects of non-neuronal acetylcholine: Biological and clinical significance of non-canonical ligands of epithelial nicotinic acetylcholine receptors. Journal of Pharmacological Science 106, 174179.CrossRefGoogle ScholarPubMed
Guan, Z.Z., Zhang, X., Mousavi, M., Tian, J.Y., Unger, C. & Nordberg, A. (2001). Reduced expression of neuronal nicotinic acetylcholine receptors during the early stages of damage by oxidative stress in PC12 cells. Journal of Neuroscience Research 66, 551558.CrossRefGoogle ScholarPubMed
Heeschen, C., Weis, M., Aicher, A., Dimmeler, S. & Cooke, J.P. (2002). A novel angiogenic pathway mediated by non-neuronal nicotinic acetylcholine receptors. The Journal of Clinical Investigation 110, 527536.CrossRefGoogle ScholarPubMed
Jones, I.W. & Wonnacott, S. (2004). Precise localization of alpha7 nicotinic acetylcholine receptors on glutamatergic axon terminals in the rat ventral tegmental area. The Journal of Neuroscience 24, 1124411252.CrossRefGoogle ScholarPubMed
Kawashima, K. & Fujii, T. (2008). Basic and clinical aspects of non-neuronal acetylcholine: Overview of non-neuronal cholinergic systems and their biological significance. Journal of Pharmacological Science 106, 167173.CrossRefGoogle ScholarPubMed
Kihara, T., Shimohama, S. & Akaike, A. (1999). Effects of nicotinic receptor agonists on beta-amyloid beta-sheet formation. The Japanese Journal of Pharmacology 79, 393396.Google ScholarPubMed
Klaver, C.C., Assink, J.J., van Leeuwen, R., Wolfs, R.C., Vingerling, J.R., Stijnen, T., Hofman, A. & de Jong, P.T. (2001). Incidence and progression rates of age-related maculopathy: The Rotterdam Study. Investigative Ophthalmololgy & Visual Science 42, 22372241.Google ScholarPubMed
Klein, R., Klein, B.E. & Linton, K.L. (1992). Prevalence of age-related maculopathy. The Beaver Dam Eye Study. Ophthalmology 99, 933943.Google ScholarPubMed
Lax, P. (2008). Melatonin inhibits nicotinic currents in cultured rat cerebellar granule neurons. Journal of Pineal Research 44, 7077.CrossRefGoogle ScholarPubMed
Lindstrom, J. (1997). Nicotinic acetylcholine receptors in health and disease. Molecular Neurobiology 15, 193222.CrossRefGoogle ScholarPubMed
Lu, F., Yan, D., Zhou, X., Hu, D.N. & Qu, J. (2007). Expression of melanin-related genes in cultured adult human retinal pigment epithelium and uveal melanoma cells. Molecular Vision 13, 20662072.Google ScholarPubMed
Macklin, K.D., Maus, A.D., Pereira, E.F., Albuquerque, E.X. & Conti-Fine, B.M. (1998). Human vascular endothelial cells express functional nicotinic acetylcholine receptors. The Journal of Pharmacology and Experimental Therapeutics 287, 435439.Google ScholarPubMed
Marritt, A.M., Cox, B.C., Yasuda, R.P., McIntosh, J.M., Xiao, Y., Wolfe, B.B. & Kellar, K.J. (2005). Nicotinic cholinergic receptors in the rat retina: Simple and mixed heteromeric subtypes. Molecular Pharmacology 68, 16561668.CrossRefGoogle ScholarPubMed
Martin, S.E., De Fiebre, N.E. & de Fiebre, C.M. (2004). The alpha7 nicotinic acetylcholine receptor-selective antagonist, methyllycaconitine, partially protects against beta-amyloid (1–42) toxicity in primary neuron-enriched cultures. Brain Research 1022, 254256.CrossRefGoogle ScholarPubMed
Mastrangeli, R., Donini, S., Kelton, C.A., He, C., Bressan, A., Milazzo, F., Ciolli, V., Borrelli, F., Martelli, F., Biffoni, M., Serlupi-Crescenzi, O., Serani, S., Micangeli, E., El Tayar, N., Vaccaro, R., Renda, T., Lisciani, R., Rossi, M. & Papoian, R. (2003). ARS component B: Structural characterization, tissue expression and regulation of the gene and protein (SLURP-1) associated with Mal de Meleda. European Journal of Dermatology 13, 560570.Google ScholarPubMed
Maus, A.D., Pereira, E.F., Karachunski, P.I., Horton, R.M., Navaneetham, D., Macklin, K., Cortes, W.S., Albuquerque, E.X. & Conti-Fine, B.M. (1998). Human and rodent bronchial epithelial cells express functional nicotinic acetylcholine receptors. Molecular Pharmacology 54, 779788.CrossRefGoogle ScholarPubMed
Millar, N.S. (2003). Assembly and subunit diversity of nicotinic acetylcholine receptors. Biochemical Society Transactions 31, 869874.CrossRefGoogle ScholarPubMed
Miwa, J.M., Ibanez-Tallon, I., Crabtree, G.W., Sánchez, R., Sali, A., Role, L.W. & Heintz, N. (1999). lynx1, an endogenous toxin-like modulator of nicotinic acetylcholine receptors in the mammalian CNS. Neuron 23, 105114.CrossRefGoogle ScholarPubMed
Miwa, J.M., Stevens, T.R., King, S.L., Caldarone, B.J., Ibanez-Tallon, I., Xiao, C., Fitzsimonds, R.M., Pavlides, C., Lester, H.A., Picciotto, M.R. & Heintz, N. (2006). The prototoxin lynx1 acts on nicotinic acetylcholine receptors to balance neuronal activity and survival in vivo. Neuron 51, 587600.CrossRefGoogle ScholarPubMed
Moretti, M., Vailati, S., Zoli, M., Lippi, G., Riganti, L., Longhi, R., Viegi, A., Clementi, F. & Gotti, C. (2004). Nicotinic acetylcholine receptor subtypes expression during rat retina development and their regulation by visual experience. Molecular Pharmacology 66, 8596.CrossRefGoogle ScholarPubMed
Moriwaki, Y., Yoshikawa, K., Fukuda, H., Fujii, Y.X., Misawa, H. & Kawashima, K. (2007). Immune system expression of SLURP-1 and SLURP-2, two endogenous nicotinic acetylcholine receptor ligands. Life Sciences 80, 23652368.CrossRefGoogle ScholarPubMed
Newhouse, P.A., Potter, A. & Levin, E.D. (1997). Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 11, 206228.CrossRefGoogle ScholarPubMed
Nguyen, V.T., Ndoye, A., Hall, L.L., Zia, S., Arredondo, J., Chernyavsky, A.I., Kist, D.A., Zelickson, B.D., Lawry, M.A., Grando, S.A. (2001). Programmed cell death of keratinocytes culminates in apoptotic secretion of a humectant upon secretagogue action of acetylcholine. Journal of Cell Science 114, 11891204.CrossRefGoogle ScholarPubMed
Raviola, E. & Wiesel, T.N. (1985). An animal model of myopia. The New England Journal of Medicine 312, 16091615.CrossRefGoogle ScholarPubMed
Romano, C. & Hicks, D. (2007). Adult retinal neuronal cell culture. Progress in Retinal Eye Research 26, 379397.CrossRefGoogle ScholarPubMed
Sato, K.Z., Fujii, T., Watanabe, Y., Yamada, S., Ando, T., Kazuko, F. & Kawashima, K. (1999). Diversity of mRNA expression for muscarinic acetylcholine receptor subtypes and neuronal nicotinic acetylcholine receptor subunits in human mononuclear leukocytes and leukemic cell lines. Neuroscience Letters 266, 1720.CrossRefGoogle ScholarPubMed
Shimohama, S. & Kihara, T. (2001). Nicotinic receptor-mediated protection against beta-amyloid neurotoxicity. Biological Psychiatry 49, 233239.CrossRefGoogle ScholarPubMed
Stone, R.A., Lin, T. & Laties, A.M. (1991). Muscarinic antagonist effects on experimental chick myopia. Experimental Eye Research 52, 755758.CrossRefGoogle ScholarPubMed
Stone, R.A., Sugimoto, R., Gill, A.S., Liu, J., Capehart, C. & Lindstrom, J.M. (2001). Effects of nicotinic antagonists on ocular growth and experimental myopia. Investigative Ophthalmololgy & Visual Science 42, 557565.Google ScholarPubMed
Tigges, M., Iuvone, P.M., Fernandes, A., Sugrue, M.F., Mallorga, P.J., Laties, A.M. & Stone, R.A. (1999). Effects of muscarinic cholinergic receptor antagonists on postnatal eye growth of rhesus monkeys. Optometry and Vision Science 76, 397407.CrossRefGoogle ScholarPubMed
Toyabe, S., Iiai, T., Fukuda, M., Kawamura, T., Suzuki, S., Uchiyama, M. & Abo, T. (1997). Identification of nicotinic acetylcholine receptors on lymphocytes in the periphery as well as thymus in mice. Immunology 92, 201205.CrossRefGoogle ScholarPubMed
Utsugisawa, K., Nagane, Y., Obara, D. & Tohgi, H. (2002). Overexpression of alpha7 nicotinic acetylcholine receptor prevents G1-arrest and DNA fragmentation in PC12 cells after hypoxia. Journal of Neurochemistry 81, 497505.CrossRefGoogle ScholarPubMed
Vailati, S., Moretti, M., Longhi, R., Rovati, G.E., Clementi, F. & Gotti, C. (2003). Developmental expression of heteromeric nicotinic receptor subtypes in chick retina. Molecular Pharmacology 63, 13291337.CrossRefGoogle ScholarPubMed
Vogel, J.S., Bullen, E.C., Teygong, C.L. & Howard, E.W. (2007). Identification of the RLBP1 gene promoter. Investigative Ophthalmololgy & Visual Science 48, 38723877.CrossRefGoogle ScholarPubMed
Wang, Y., Pereira, E.F., Maus, A.D., Ostlie, N.S., Navaneetham, D., Lei, S., Albuquerque, E.X. & Conti-Fine, B.M. (2001). Human bronchial epithelial and endothelial cells express alpha7 nicotinic acetylcholine receptors. Molecular Pharmacology 60, 12011209.CrossRefGoogle ScholarPubMed
Wessler, I. & Kirkpatrick, C.J. (2008). Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. British Journal of Pharmacology 154, 15581571.CrossRefGoogle ScholarPubMed
Yoshida, T., Ohno-Matsui, K., Ichinose, S., Sato, T., Iwata, N., Saido, T.C., Hisatomi, T., Mochizuki, M. & Morita, I. (2005). The potential role of amyloid beta in the pathogenesis of age-related macular degeneration. The Journal of Clinical Investigation 115, 27932800.CrossRefGoogle ScholarPubMed
Yuan, Y.Q., Van Soom, A., Coopman, F.O., Mintiens, K., Boerjan, M.L., Van Zeveren, A., de Kruif, A. & Peelman, L.J. (2003). Influence of oxygen tension on apoptosis and hatching in bovine embryos cultured in vitro. Theriogenology 59, 15851596.CrossRefGoogle ScholarPubMed
Zarbin, M.A. (1998). Age-related macular degeneration: Review of pathogenesis. European Journal of Ophthalmology 8, 199206.CrossRefGoogle ScholarPubMed
Zia, S., Ndoye, A., Lee, T.X., Webber, R.J., Grando, S.A. (2000). Receptor-mediated inhibition of keratinocyte migration by nicotine involves modulations of calcium influx and intracellular concentration. Journal of Pharmacology and Experimental Therapeutics 293, 973981.Google ScholarPubMed