Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T02:48:24.982Z Has data issue: false hasContentIssue false

Dose-dependent effects of 6-hydroxy dopamine on deprivation myopia, electroretinograms, and dopaminergic amacrine cells in chickens

Published online by Cambridge University Press:  02 June 2009

Xiao-Xin Li
Affiliation:
University Eye Hospital, Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, Ob dem Himmelreich 9, 7400 Tübingen, Germany
Frank Schaeffel
Affiliation:
University Eye Hospital, Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, Ob dem Himmelreich 9, 7400 Tübingen, Germany
Konrad Kohler
Affiliation:
University Eye Hospital, Department of Pathophysiology of Vision and Neuro-Ophthalmology, Division of Experimental Ophthalmology, Ob dem Himmelreich 9, 7400 Tübingen, Germany

Abstract

We found that a single intravitreal injection of 6-hydroxy dopamine (6-OHDA) is highly efficient in blocking the development of deprivation-induced myopia in young chickens. To investigate the effects of 6-OHDA on retinal function, we studied electroretinograms (ERGs) in chickens aged 15-25 days, 4 days subsequent to the injection. Both spectral sensitivity and oscillatory potentials were tested. In addition, a histological examination was performed of dopaminergic amacrine cells labeled by a monoclonal antibody against tyrosine hydroxylase. We found that, at doses of 6-OHDA sufficient to suppress deprivation myopia entirely, no effect could be detected on either the ERGs or on the density and appearance of dopaminergic amacrine cells. For higher doses, spectral sensitivity and the number of dopaminergic amacrine cells declined gradually. In contrast, as doses increased, oscillatory potentials 1 and 2 grew in amplitude only to decline at the highest doses. The results indicate that (1) development of deprivation myopia requires normal retinal function and that (2) slight changes in the gains of dopaminergic pathways are sufficient to block the development of deprivation myopia.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartmann, M.L., Weiss, S., Schaeffel, F. & Zrenner, E. (1992). Diurnal variations in axial eye growth and their relation to retinal dopamine levels in chickens. Investigative Ophthalmology and Visual Science (Suppl.) 33, 1805.Google Scholar
Bodis-Wollner, I. (1990). Visual deficits related to dopamine deficiency in experimental animals and Parkinson's disease patients. Trends in Neuroscience 13, 296302.CrossRefGoogle ScholarPubMed
Brainard, G.C. & Morgan, W.W. (1987). Light-induced stimulation of retinal dopamine: A dose response relationship. Brain Research 424, 199203.CrossRefGoogle ScholarPubMed
Citron, M.C., Erinoff, L., Rickman, D.W. & Brecha, N. (1985). Modification of the electroretinograms in dopamine-depleted retinas. Brain Research 345, 186191.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1990). The dopaminergic amacrine cell. Journal of Comparative Neurology 301, 461480.CrossRefGoogle ScholarPubMed
Dick, E., Miller, R.F. & Bloofield, S. (1985). Extracellular K+ activity changes related to electroretinogram components, II: Rabbit (e-type) retinas. Journal of General Physiology 85, 911931.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ehinger, B. (1975). Synaptic organization of the amine-containing interplexiform cells in the goldfish and Cebus monkey retinas. Science 188, 270273.CrossRefGoogle ScholarPubMed
Dowling, J.E. & Ehinger, B. (1978). Synaptic organization of the dopaminergic neurons in the rabbit retina. Journal of Comparative Neurology 180, 203220.CrossRefGoogle ScholarPubMed
Gottlob, I., Weghaupt, H. & Vass, C. (1990). Effect of levadopa on the human luminance electroretinogram. Investigative Ophthalmology and Visual Science 31, 12521258.Google Scholar
Heynen, H. & Van norren, D. (1985). Origin of the electroretinogram in the intact macaque eye, II: Current source density analysis. Vision Research 25, 709716.CrossRefGoogle ScholarPubMed
Heynen, H., Wachtmeister, L. & Van norren, D. (1985). Origin of the oscillatory potentials in the primate retina. Vision Research 25, 13651373.CrossRefGoogle ScholarPubMed
Hodos, W. & Kuenzel, W.J. (1984). Retinal image degradation produces ocular enlargement in chicks. Investigative Ophthalmology and Visual Science 25, 562659.Google ScholarPubMed
Luvone, P.M., Tigges, M., Stone, R.A., Lambert, S. & Laties, A.M. (1990). Apomorphine inhibits development of myopia in visually deprived infant Rhesus monkeys. Investigative Ophthalmology and Visual Science (Suppl.) 31, 254.Google Scholar
Jonsson, G. (1983). Chemical lesioning techniques: monoamine neurotoxins. In Handbook of Chemical Neuroanatomy, Vol. 1, ed. Björklund, A. & Hökfelt, T., pp. 463497. Elsevier Science Publishers B.V.Google Scholar
Kojima, M. & Zrenner, E. (1978). Off-Components In Responses To Brief Light Flashes In The Oscillatory Potentials Of The Human Electroretinogram. Albrecht von Craefes Archiv Klinische Experimentelle Ophthalmologie 206, 107120.CrossRefGoogle ScholarPubMed
Kramer, S.G. (1971). Dopamine: a retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of [3H]-dopamine in vivo. Investigative Ophthalmology 10, 438452.Google ScholarPubMed
Lemmer, T. (1991). Stäbchen- und Zapfenprozesse im Electroretinogramm des Kaninchens. Kyrill-u. Method-Verlag München (Edition Wissenschaft), pp. 1153.Google Scholar
Maguire, G.W. & Smith, E.L. (1985). Cat retinal ganglion cell receptive-field alterations after 6-hydroxydopamine induced dopaminergic amacrine cell lesions. Journal of Neurophysiology 53, 14311443.CrossRefGoogle ScholarPubMed
Marmor, M.F., Hock, P., Schlechter, G., Pfefferbaum, A., Berger, P.A. & Maurice, R. (1988). Oscillatory potentials as a marker for dopaminergic disease. Documenta Ophthalmologica 69, 255261.CrossRefGoogle ScholarPubMed
Oliver, P., Jolicoeur, F.B., Lafond, B., Drumheller, A.T. & Brunette, J.R. (1986). Dose-related effects of 6-OHDA on rabbit retinal dopamine concentrations and ERG b-wave amplitudes. Brain Research Bulletin 16, 751753.CrossRefGoogle Scholar
Oliver, P., Jolicoeur, F.B., Lafond, G., Drumheller, A.T. & Brunette, J.R. (1987). Effects of retinal dopamine depletion on the rabbit electroretinogram. Documenta Ophthalmologica 66, 359371.CrossRefGoogle ScholarPubMed
Parkinson, D. & Rando, R. (1983). Effects of light on dopamine metabolism in the chick retina. Journal of Neurochemistry 40, 3946.CrossRefGoogle ScholarPubMed
Pettigrew, J.D., Wallman, J. & Wildsoet, C.F. (1990). Saccadic oscillations facilitate ocular perfusion from the avian pecten. Nature 343, 362363.CrossRefGoogle ScholarPubMed
Pickett-Seltner, R.L., Sivak, J.G. & Pasternak, J.J. (1988). Experimentally induced myopia in chicks: Morphometrical and biochemical analysis during the first 14 days after hatching. Vision Research 28, 323328.CrossRefGoogle ScholarPubMed
Rohrer, B., Schaeffel, F. & Zrenner, E. (1991). Chromatic aberration and emmetropization: Results from the chicken eye. Journal of Physiology 449, 363376.CrossRefGoogle Scholar
Rudolf, G., Wioland, N., Kempf, E. & Bonaventure, N. (1989). Electrooculographic study in the chicken after treatment with neurotoxin 6-hydroxydopamine. Documenta Ophthalmologica 72, 8391.CrossRefGoogle ScholarPubMed
Schaeffel, F. & Howland, H.C. (1991). Properties of visual feedback loops controlling eye growth and refractive state in the chicken. Vision Research 31, 717734.CrossRefGoogle Scholar
Schaeffel, F., Rohrer, B., Lemmer, T. & Zrenner, E. (1991). Diurnal control of rod function in the chicken. Visual Neuroscience 6, 641653.CrossRefGoogle ScholarPubMed
Schneider, T. & Zrenner, E. (1991). Effects of D1-and D2-dopamine antagonists on ERG and optic nerve response of the cat. Experimental Eye Research 52, 425430.CrossRefGoogle Scholar
Skandies, W. & Wässle, H. (1988). Dopamine and serotonin in cat retina: Electroretinography and histology. Experimental Brain Research 71, 231240.Google Scholar
Stone, R.A., Lin, T., Luvone, P.M. & Laties, A.M. (1990). Postnatal control of ocular growth: Dopaminergic mechanisms. In Myopia and the Control of Eye Growth. CIBA Foundation Symposium, Vol. 155, ed. Bock, G. & Widdows, K., pp. 4562. Chichester, U.K.: Wiley & Sons.Google Scholar
Stone, R.A., Lin, T., Laties, A.M. & Luvone, P.M. (1989). Retinal dopamine and form deprivation myopia. Proceedings of the National Academy of Sciences of the U.S.A. 86, 704706.CrossRefGoogle ScholarPubMed
Wachtmeister, L. (1980). Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG), I: GABA and glycine antagonists. Acta Ophthalmologica 58, 712725.CrossRefGoogle ScholarPubMed
Wachtmeister, L. (1981). Further studies on the chemical sensitivity of the oscillatory potentials on the electroretinogram (ERG), II: Glutamate-, aspartate-and dopamine antagonists. Acta Ophthalmologica 59, 247250.CrossRefGoogle ScholarPubMed
Wachtmeister, L. (1987). Basic research and clinical aspects of the oscillatory potentials of the electroretinogram. Documenta Ophthalmologica 66, 187194.CrossRefGoogle ScholarPubMed
Wallman, J. & Adams, J.I. (1987). Developmental aspects of experimental myopia in chicks. Vision Research 27, 11391163.CrossRefGoogle ScholarPubMed
Wallman, J., Turkel, J. & Trachtman, J. (1978). Extreme myopia produced by modest changes in early visual experience. Science 201, 12491251.CrossRefGoogle ScholarPubMed
Wallman, J., Gottlieb, M.D., Rajaram, V. & Fugate-Wentzek, L. (1987). Local retinal regions control local eye growth and myopia. Science 237, 7377.CrossRefGoogle ScholarPubMed