Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T09:24:25.779Z Has data issue: false hasContentIssue false

Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina

Published online by Cambridge University Press:  29 July 2013

DENNIS M. DACEY*
Affiliation:
Department of Biological Structure and The National Primate Research Center, University of Washington, Seattle, Washington
JOANNA D. CROOK
Affiliation:
Department of Biological Structure and The National Primate Research Center, University of Washington, Seattle, Washington
ORIN S. PACKER
Affiliation:
Department of Biological Structure and The National Primate Research Center, University of Washington, Seattle, Washington
*
*Address correspondence to: Dennis Dacey, Department of Biological Structure, University of Washington, Seattle, WA 98195-7420. E-mail: [email protected]

Abstract

Anatomical and physiological approaches are beginning to reveal the synaptic origins of parallel ON- and OFF-pathway retinal circuits for the transmission of short (S-) wavelength sensitive cone signals in the primate retina. Anatomical data suggest that synaptic output from S-cones is largely segregated; central elements of synaptic triads arise almost exclusively from the “blue-cone” bipolar cell, a presumed ON bipolar, whereas triad-associated contacts derive primarily from the “flat” midget bipolar cell, a hyperpolarizing, OFF bipolar. Similarly, horizontal cell connectivity is also segregated, with only the H2 cell-type receiving numerous contacts from S-cones. Negative feedback from long (L-) and middle (M-) wavelength sensitive cones via the H2 horizontal cells elicits an antagonistic surround in S-cones demonstrating that S versus L + M or “blue-yellow” opponency is first established in the S-cone. However, the S-cone output utilizes distinct synaptic mechanisms to create color opponency at the ganglion cell level. The blue-cone bipolar cell is presynaptic to the small bistratified, “blue-ON” ganglion cell. S versus L + M cone opponency arises postsynaptically by converging S-ON and LM-OFF excitatory bipolar inputs to the ganglion cell’s bistratified dendritic tree. The common L + M cone surrounds of the parallel S-ON and LM-OFF cone bipolar inputs appear to cancel resulting in “blue-yellow” antagonism without center-surround spatial opponency. By contrast, in midget ganglion cells, opponency arises by the differential weighting of cone inputs to the receptive field center versus surround. In the macula, the “private-line” connection from a midget ganglion cell to a single cone predicts that S versus L + M opponency is transmitted from the S-cone to the S-OFF midget bipolar and ganglion cell. Beyond the macula, OFF-midget ganglion cell dendritic trees enlarge and collect additional input from multiple L and M cones. Thus S-OFF opponency via the midget pathway would be expected to become more complex in the near retinal periphery as L and/or M and S cone inputs sum to the receptive field center. An important goal for further investigation will be to explore the hypothesis that distinct bistratified S-ON versus midget S-OFF retinal circuits are the substrates for human psychophysical detection mechanisms attributed to S-ON versus S-OFF perceptual channels.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnelt, P., Keri, C. & Kolb, H. (1990). Identification of pedicles of putative blue-sensitive cones in the human retina. The Journal of Comparative Neurology 293, 3953.Google Scholar
Ahnelt, P. & Kolb, H. (1994 a). Horizontal cells and cone photoreceptors in human retina: A golgi-electron microscopic study of spectral connectivity. The Journal of Comparative Neurology 343, 406427.Google Scholar
Ahnelt, P. & Kolb, H. (1994 b). Horizontal cells and cone photoreceptors in primate retina: A golgi-light microscopic study of spectral connectivity. The Journal of Comparative Neurology 343, 387405.CrossRefGoogle ScholarPubMed
Ahnelt, P.K., Kolb, H. & Pflug, R. (1987). Identification of a subtype of cone photoreceptor, likely to be blue sensitive, in the human retina. The Journal of Comparative Neurology 255, 1834.Google Scholar
Boycott, B.B. & Wässle, H. (1991). Morphological classification of bipolar cells of the primate retina. The European Journal of Neuroscience 3, 10691088.Google Scholar
Breuninger, T., Puller, C., Haverkamp, S. & Euler, T. (2011). Chromatic bipolar cell pathways in the mouse retina. The Journal of Neuroscience 31, 65046517.Google Scholar
Calkins, D.J. (2000). Representation of cone signals in the primate retina. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 17, 597606.Google Scholar
Calkins, D.J. (2001). Seeing with S cones. Progress in Retina and Eye Research 20, 255287.Google Scholar
Calkins, D.J., Tsukamoto, Y. & Sterling, P. (1998). Microcircuitry and mosaic of a blue-yellow ganglion cell in the primate retina. The Journal of Neuroscience 18, 33733385.Google Scholar
Chan, T.L., Goodchild, A.K. & Martin, P.R. (1997). The morphology and distribution of horizontal cells in the retina of a new world monkey, the marmoset Callithrix jacchus: A comparison with macaque monkey. Visual Neuroscience 14, 125140.CrossRefGoogle ScholarPubMed
Chan, T.L. & Grünert, U. (1998). Horizontal cell connections with short wavelength-sensitive cones in the retina: A comparison between New World and Old World primates. The Journal of Comparative Neurology 393, 196209.3.0.CO;2-Y>CrossRefGoogle ScholarPubMed
Chan, T.L., Martin, P.R., Clunas, N. & Grunert, U. (2001). Bipolar cell diversity in the primate retina: Morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 437, 219239.Google Scholar
Crook, J.D., Davenport, C.M., Peterson, B.B., Packer, O.S., Detwiler, P.B. & Dacey, D.M. (2009). Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina. The Journal of Neuroscience 29, 83728387.Google Scholar
Crook, J.D., Manookin, M.B., Packer, O.S. & Dacey, D.M. (2010). Excitatory synaptic conductances mediate ‘blue-yellow’ and ‘red-green’ opponency in macaque monkey retinal ganglion cells. ARVO e-abstracts 5178.Google Scholar
Crook, J.D., Manookin, M.B., Packer, O.S. & Dacey, D.M. (2011). Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina. The Journal of Neuroscience 31, 17621772.Google Scholar
Crook, J.D., Packer, O.S., Troy, J.B. & Dacey, D.M. (2013). Synaptic mechanisms of color and luminance coding: rediscovering the X-Y dichotomy in primate retinal ganglion cells. In The New Visual Neurosciences, ed. Chalupa, M. & Werner, J.S.Cambridge, MA: MIT press.Google Scholar
Curcio, C.A., Allen, K.A., Sloan, K.R., Lerea, C.L., Hurley, J.B., Klock, I.B. & Milam, A.H. (1991). Distribution and morphology of human cone photoreceptors stained with anti-blue opsin. The Journal of Comparative Neurology 312, 610624.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1993). Morphology of a small-field bistratified ganglion cell type in the macaque and human retina. Visual Neuroscience 10, 10811098.CrossRefGoogle ScholarPubMed
Dacey, D.M. (1996). Circuitry for color coding in the primate retina. Proceedings of the National Academy of Sciences of the United States of America 93, 582588.Google Scholar
Dacey, D.M., Crook, J.D., Manookin, M.B. & Packer, O.S. (2011). Absence of synaptic inhibition associated with S-cone ON excitatory input to the small bistratified, blue-yellow opponent ganglion cell of the macaque monkey retina. ARVO e-abstracts 4571.Google Scholar
Dacey, D.M., Diller, L.C., Verweij, J. & Williams, D.R. (2000 a). Physiology of L- and M-cone inputs to H1 horizontal cells in the primate retina. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 17, 589596.Google Scholar
Dacey, D.M. & Lee, B.B. (1994). The blue-ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.Google Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.CrossRefGoogle ScholarPubMed
Dacey, D.M., Liao, H.-W., Peterson, B.B., Robinson, F.R., Smith, V.C., Pokorny, J., Yau, K.-W. & Gamlin, P.D. (2005). Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433, 749754.Google Scholar
Dacey, D.M. & Packer, O.S. (2003). Colour coding in the primate retina: Diverse cell types and cone-specific circuitry. Current Opinion in Neurobiology 13, 421427.CrossRefGoogle ScholarPubMed
Dacey, D.M., Packer, O.S., Diller, L.C., Brainard, D.H., Peterson, B.B. & Lee, B.B. (2000 b). Center surround receptive field structure of cone bipolar cells in primate retina. Vision Research 40, 18011811.Google Scholar
Dacey, D.M., Peterson, B.B., Liao, H.-W. & Yau, K.-W. (2006). Two types of melanopsin-containing ganglion cell in the primate retina: Links to dopaminergic amacrine and DB6 cone bipolar cells. Investigative Ophthalmology & Visual Science 47, 3111.Google Scholar
Dacey, D.M., Peterson, B.B., Robinson, F.R. & Gamlin, P.D. (2003). Fireworks in the primate retina: In vitro photodynamics reveals diverse LGN-projecting ganglion cell types. Neuron 37, 1527.Google Scholar
Davenport, C.M., Detwiler, P.B. & Dacey, D.M. (2008). Effects of pH buffering on horizontal and ganglion cell light responses in primate retina: Evidence for the proton hypothesis of surround formation. The Journal of Neuroscience 28, 456464.CrossRefGoogle ScholarPubMed
de Monasterio, F.M. (1979). Asymmetry of On-and OFF-pathways of blue-sensitive cones of the retina of macaques. Brain Research 166, 3948.Google Scholar
de Monasterio, F.M. & Gouras, P. (1975). Functional properties of ganglion cells of the rhesus monkey retina. The Journal of Physiology 251, 167195.Google Scholar
de Monasterio, F.M., Gouras, P. & Tolhurst, D.J. (1975). Trichromatic color opponency in ganglion cells of the rhesus monkey retina. The Journal of Physiology 251, 197216.CrossRefGoogle ScholarPubMed
de Monasterio, F.M., Schein, S.J. & McCrane, E.P. (1981). Staining of blue-sensitive cones of the macaque retina by a fluorescent dye. Science 213, 12781281.Google Scholar
Derrington, A.M., Krauskopf, J. & Lennie, P. (1984). Chromatic mechanisms in lateral geniculate nucleus of macaque. The Journal of Physiology 357, 241265.Google Scholar
Diller, L., Packer, O.S., Verweij, J., McMahon, M.J., Williams, D.R. & Dacey, D.M. (2004). L and M cone contributions to the midget and parasol ganglion cell receptive fields of macaque monkey retina. The Journal of Neuroscience 24, 10791088.CrossRefGoogle Scholar
Evers, H.U. & Gouras, P. (1986). Three cone mechanisms in the primate electroretinogram: Two with, one without off-center bipolar responses. Vision Research 26, 245254.Google Scholar
Fahey, P.K. & Burkhardt, D.A. (2003). Center-surround organization in bipolar cells: Symmetry for opposing contrasts. Visual Neuroscience 20, 110.Google Scholar
Field, G.D., Gauthier, J.L., Sher, A., Greschner, M., Machado, T.A., Jepson, L.H., Shlens, J., Gunning, D.E., Mathieson, K., Dabrowski, W., Paninski, L., Litke, A.M. & Chichilnisky, E.J. (2010). Functional connectivity in the retina at the resolution of photoreceptors. Nature 467, 673677.Google Scholar
Field, G.D., Sher, A., Gauthier, J.L., Greschner, M., Shlens, J., Litke, A.M. & Chichilnisky, E.J. (2007). Spatial properties and functional organization of small bistratified ganglion cells in primate retina. The Journal of Neuroscience 27, 1326113272.Google Scholar
Garrigan, P., Ratliff, C.P., Klein, J.M., Sterling, P., Brainard, D.H. & Balasubramanian, V. (2010). Design of a trichromatic cone array. PLoS Computational Biology 6, e1000677.Google Scholar
Ghosh, K.K. & Grunert, U. (1999). Synaptic input to small bistratified (blue-ON) ganglion cells in the retina of a new world monkey, the marmoset Callithrix jacchus. The Journal of Comparative Neurology 413, 417428.Google Scholar
Goodchild, A.K., Chan, T.L. & Grünert, U. (1996). Horizontal cell connections with short-wavelength-sensitive cones in macaque monkey retina. Visual Neuroscience 13, 833845.CrossRefGoogle ScholarPubMed
Grunert, U., Jusuf, P.R., Lee, S.C. & Nguyen, D.T. (2011). Bipolar input to melanopsin containing ganglion cells in primate retina. Visual Neuroscience 28, 3950.CrossRefGoogle ScholarPubMed
Hack, I. & Peichl, L. (1999). Horizontal cells of the rabbit retina are non-selectively connected to the cones. The European Journal of Neuroscience 11, 22612274.CrossRefGoogle Scholar
Haverkamp, S., Grunert, U. & Wassle, H. (2001). The synaptic architecture of AMPA receptors at the cone pedicle of the primate retina. The Journal of Neuroscience 21, 24882500.Google Scholar
Haverkamp, S., Möckel, W. & Ammermüller, J. (1999). Different types of synapses with different spectral types of cones underlie color opponency in a bipolar cell of the turtle retina. Visual Neuroscience 16, 801809.Google Scholar
Haverkamp, S., Wassle, H., Duebel, J., Kuner, T., Augustine, G.J., Feng, G. & Euler, T. (2005). The primordial, blue-cone color system of the mouse retina. The Journal of Neuroscience 25, 54385445.Google Scholar
Herr, S., Klug, K., Sterling, P. & Schein, S. (2003). Inner S-cone bipolar cells provide all of the central elements for S cones in macaque retina. The Journal of Comparative Neurology 457, 185201.Google Scholar
Hirasawa, H. & Kaneko, A. (2003). pH changes in the invaginating synaptic cleft mediate feedback from horizontal cells to cone photoreceptors by modulating Ca2+ channels. The Journal of General Physiology 122, 657671.Google Scholar
Hornstein, E.P., Verweij, J. & Schnapf, J.L. (2004). Electrical coupling between red and green cones in primate retina. Nature Neuroscience 7, 745750.Google Scholar
Jacoby, R.A., Wiechmann, A.F., Amara, S.G., Leighton, B.H. & Marshak, D.W. (2000). Diffuse bipolar cells provide input to OFF parasol ganglion cells in the macaque retina. The Journal of Comparative Neurology 416, 618.3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Joo, H.R., Peterson, B.B., Haun, T.J. & Dacey, D.M. (2011). Characterization of a novel large-field cone bipolar cell type in the primate retina: Evidence for selective cone connections. Visual Neuroscience 28, 2937.Google Scholar
Klug, K., Herr, S., Ngo, I.T., Sterling, P. & Schein, S. (2003). Macaque retina contains an S-cone OFF midget pathway. The Journal of Neuroscience 23, 98819887.Google Scholar
Kolb, H., Goede, P., Roberts, S., McDermott, R. & Gouras, P. (1997). Uniqueness of the S-cone pedicle in the human retina and consequences for color processing. The Journal of Comparative Neurology 386, 443460.Google Scholar
Kouyama, N. & Marshak, D.W. (1992). Bipolar cells specific for blue cones in the macaque retina. The Journal of Neuroscience 12, 12331252.Google Scholar
Lee, B.B., Martin, P.R. & Grunert, U. (2010). Retinal connectivity and primate vision. Progress in Retina and Eye Research 29, 622639.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. The Journal of Physiology 404, 323347.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker. The Journal of Physiology 414, 223243.Google Scholar
Lee, S. & Grunert, U. (2007). Connections of diffuse bipolar cells in primate retina are biased against S-cones. The Journal of Comparative Neurology 502, 126140.Google Scholar
Lee, S.C., Jusuf, P.R. & Grunert, U. (2004). S-cone connections of the diffuse bipolar cell type DB6 in macaque monkey retina. The Journal of Comparative Neurology 474, 353363.CrossRefGoogle ScholarPubMed
Lee, S.C., Telkes, I. & Grunert, U. (2005). S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus. The European Journal of Neuroscience 22, 437447.Google Scholar
Lennie, P. & Movshon, J.A. (2005). Coding of color and form in the geniculostriate visual pathway (invited review). Journal of the Optical Society of America. A, Optics, Image Science, and Vision 22, 20132033.Google Scholar
Lennie, P., Pokorny, J. & Smith, V.C. (1993). Luminance. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 10, 1283–1193.Google Scholar
Li, W. & DeVries, S.H. (2004). Separate blue and green cone networks in the mammalian retina. Nature Neuroscience 7, 751756.Google Scholar
Li, W. & DeVries, S.H. (2006). Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina. Nature Neuroscience 9, 669675.CrossRefGoogle Scholar
Marc, R.E. & Sperling, H.G. (1977). Chromatic organization of primate cones. Science 196, 454456.Google Scholar
Mariani, A.P. (1984). Bipolar cells in monkey retina selective for the cones likely to be blue-sensitive. Nature 308, 184186.Google Scholar
Marshak, D.W., Yamada, E.S., Bordt, A.S. & Perryman, W.C. (2002). Synaptic input to an ON parasol ganglion cell in the macaque retina: A serial section analysis. Visual Neuroscience 19, 299305.Google Scholar
Martin, P.R., Blessing, E.M., Buzas, P., Szmajda, B.A. & Forte, J.D. (2011). Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys. The Journal of Physiology 589, 27952812.Google Scholar
Martin, P.R. & Grünert, U. (1999). Analysis of the short wavelength-sensitive (“blue”) cone mosaic in the primate retina: Comparison of New World and Old World monkeys. The Journal of Comparative Neurology 406, 114.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Martin, P.R., Grunert, U., Chan, T.L. & Bumsted, K. (2000). Spatial order in short-wavelength-sensitive cone photoreceptors: A comparative study of the primate retina. Journal of the Optical Society of America. A, Optics, Image Science, and Vision 17, 557567.CrossRefGoogle ScholarPubMed
McLellan, J.S. & Eskew, R.T. (2000). ON and OFF S-cone pathways have different long-wave cone inputs. Vision Research 40, 24492465.Google Scholar
O’Brien, J.J., Chen, X., Macleish, P.R., O’Brien, J. & Massey, S.C. (2012). Photoreceptor coupling mediated by connexin36 in the primate retina. The Journal of Neuroscience 32, 46754687.Google Scholar
Packer, O.S., Verweij, J., Li, P.H., Schnapf, J.L. & Dacey, D.M. (2010). Blue-yellow opponency in primate S cone photoreceptors. The Journal of Neuroscience 30, 568572.Google Scholar
Peichl, L., Sandmann, D. & Boycott, B.B. (1998). Comparative anatomy and function of mammalian horizontal cells. In Development and Organization of the Retina, ed. Chalupa, L.M. & Finlay, B.L., pp. 147172. New York: Plenum Press.Google Scholar
Percival, K.A., Jusuf, P.R., Martin, P.R. & Grunert, U. (2009). Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina. The Journal of Comparative Neurology 517, 655669.Google Scholar
Puller, C., Haverkamp, S. & Grunert, U. (2007). OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. The Journal of Comparative Neurology 502, 442454.Google Scholar
Puthussery, T., Gayet-Primo, J., Taylor, W.R. & Haverkamp, S. (2011). Immunohistochemical identification and synaptic inputs to the diffuse bipolar cell type DB1 in macaque retina. The Journal of Comparative Neurology 519, 36403656.Google Scholar
Sher, A. & DeVries, S.H. (2012). A non-canonical pathway for mammalian blue-green color vision. Nature Neuroscience 15, 952953.Google Scholar
Shinomori, K., Spillmann, L. & Werner, J.S. (1999). S-cone signals to temporal OFF-channels: Asymmetrical connections to postreceptoral chromatic mechanisms. Vision Research 39, 3949.CrossRefGoogle ScholarPubMed
Shinomori, K. & Werner, J.S. (2008). The impulse response of S-cone pathways in detection of increments and decrements. Visual Neuroscience 25, 341347.Google Scholar
Silveira, L.C., Lee, B.B., Yamada, E.S., Kremers, J., Hunt, D.M., Martin, P.R. & Gomes, F.L. (1999). Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: Morphology and physiology. Visual Neuroscience 16, 333343.Google Scholar
Solomon, S.G., Lee, B.B., White, A.J., Ruttiger, L. & Martin, P.R. (2005). Chromatic organization of ganglion cell receptive fields in the peripheral retina. The Journal of Neuroscience 25, 45274539.Google Scholar
Stockman, A. & Brainard, D.H. (2010). Color Vision Mechanisms. New York: McGraw-Hill.Google Scholar
Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. (2006 a). Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Visual Neuroscience 23, 441446.CrossRefGoogle ScholarPubMed
Sun, H., Smithson, H.E., Zaidi, Q. & Lee, B.B. (2006 b). Specificity of cone inputs to macaque retinal ganglion cells. Journal of Neurophysiology 95, 837849.CrossRefGoogle ScholarPubMed
Szmajda, B.A., Buzas, P., Fitzgibbon, T. & Martin, P.R. (2006). Geniculocortical relay of blue-off signals in the primate visual system. Proceedings of the National Academy of Sciences of the United States of America 103, 1951219517.Google Scholar
Tailby, C., Solomon, S.G. & Lennie, P. (2008 a). Functional asymmetries in visual pathways carrying S-cone signals in macaque. The Journal of Neuroscience 28, 40784087.Google Scholar
Tailby, C., Szmajda, B.A., Buzas, P., Lee, B.B. & Martin, P.R. (2008 b). Transmission of blue (S) cone signals through the primate lateral geniculate nucleus. The Journal of Physiology 586, 59475967.Google Scholar
Thoreson, W.B. & Mangel, S.C. (2012). Lateral interactions in the outer retina. Progress in Retina and Eye Research 31, 407441.Google Scholar
Valberg, A., Lee, B.B. & Tigwell, D.A. (1986). Neurones with strong inhibitory s-cone inputs in the macaque lateral geniculate nucleus. Vision Research 26, 10611064.CrossRefGoogle ScholarPubMed
Verweij, J., Dacey, D.M., Peterson, B.B. & Buck, S.L. (1999 a). Sensitivity and dynamics of rod signals in H1 horizontal cells of the macaque monkey retina. Vision Research 39, 36623672.CrossRefGoogle ScholarPubMed
Verweij, J., Diller, L.C., Williams, D.R. & Dacey, D.M. (1999 b). The relative strength of L and M cone inputs to H1 horizontal cells in primate retina. Investigative Ophthalmology & Visual Science 40, S240.Google Scholar
Verweij, J., Hornstein, E.P. & Schnapf, J.L. (2003). Surround antagonism in macaque cone photoreceptors. The Journal of Neuroscience 23, 1024910257.Google Scholar
Verweij, J., Kamermans, M. & Spekreijse, H. (1996). Horizontal cells feed back to cones by shifting the cone calcium-current activation range. Vision Research 36, 39433953.Google Scholar
Wassle, H., Puller, C., Muller, F. & Haverkamp, S. (2009). Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. The Journal of Neuroscience 29, 106117.Google Scholar
Wiesel, T.N. & Hubel, D.H. (1966). Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey. Journal of Neurophysiology 29, 11151156.Google Scholar
Williams, D.R., MacLeod, D.I.A. & Hayhoe, M.M. (1981). Punctate sensitivity of the blue-sensitive mechanism. Vision Research 21, 13571375.Google Scholar
Wong, K.Y. & Dowling, J.E. (2005). Retinal bipolar cell input mechanisms in giant Danio: III. ON-OFF bipolar cells and their color-opponent mechanisms. Journal of Neurophysiology 94, 265272.Google Scholar
Yin, L., Smith, R.G., Sterling, P. & Brainard, D.H. (2009). Physiology and morphology of color-opponent ganglion cells in a retina expressing a dual gradient of S and M opsins. The Journal of Neuroscience 29, 27062724.Google Scholar