Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T13:32:17.389Z Has data issue: false hasContentIssue false

Development of the rabbit retina, III: Differential retinal growth, and density of projection neurons and interneurons

Published online by Cambridge University Press:  02 June 2009

A. Reichenbach
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
J. Schnitzer
Affiliation:
Max Planck Institute for Brain Research, Department of Neuroanatomy, Frankfurt/Main, Germany
E. Reichelt
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
N. N. Osborne
Affiliation:
Nuffield Laboratory of Ophthalmology, University of Oxford, Oxford, UK
B. Fritzsche
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
A. Puls
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
U. Richter
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
A. Friedrich
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
A. -K. Knothe
Affiliation:
Carl Ludwig Institute of Physiology, Leipzig University, Leipzig, Germany
W. Schober
Affiliation:
Paul Flechsig Institute for Brain Research, Department of Neuroanatomy, Leipzig University, Leipzig, Germany
U. Timmermann
Affiliation:
Center of Anatomy, Department of Developmental Neurobiology and Clinical Anatomy, Göttingen University, Göttingen, Germany

Abstract

To provide a quantitative description of postnatal retinal expansion in rabbits, a new procedure was developed to map the retinae, which cover the inner surface of hemispheres or parts of rotation ellipsoids, in situ, onto a single plane. This method, as well as the known distribution of Müller cells per unit retinal surface area, were used to estimate the redistribution of specific subpopulations of Müller cells within different topographic regions of the retinae. Müller cells are known to exist as a stable population of cells 1 week after birth and can therefore be used as “markers” for determining tissue expansion. Our results show that differential retinal expansion occurs during development. Peripheral retinal regions expand at least twice as much as the central ones. Furthermore, there is a greater vertical than horizontal expansion. This differential retinal expansion leads to a corresponding redistribution of 5-hydroxytryptamine (5-HT) accumulating amacrine cells. Differential retinal expansion, however, does not account for all of the changes in the centro-peripheral density gradient of cells in the ganglion cell layer (GCL) — mostly retinal ganglion cells — during postnatal development. The changes in the ganglion cell layer were evaluated in Nissl-stained wholemount retinal preparations. Additionally, the difference between expansion-related redistribution of cells in the GCL and Müller cells was confirmed in wholemount preparations where Müller cells (identified as vimentin positive) and cells in the GCL (identified by fluorescent supravital dyes) were simultaneously labeled. It is assumed that many of the ganglion cells within the retinal center are not translocated during retinal expansion, possibly because their axons are fixed. In contrast, 5-HT accumulating amacrine cells — which are interneurons without a retinofugal axon — display a passive redistribution together with the surrounding retinal tissue.

Type
Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bähr, M., Wizenmann, A. & Thanos, S. (1992). Effect of bilateral tectum lesions on retinal ganglion cell morphology in rats. Journal of Comparative Neurology 320, 370380.CrossRefGoogle ScholarPubMed
Beazley, L.A., Dunlop, S.A., Harman, A.M. & Coleman, L.-A. (1989). Development of density gradients in the retinal ganglion cell layer of amphibians and marsupials: Two solutions to one problem. In Development of the Vertebrate Retina, ed., Finlay, B.L. & Senoelaub, D.R., pp. 199226. New York & London: Plenum Press.CrossRefGoogle Scholar
Blaschke, W. (1945). Vorlesungen über Differentialgeometrie. 4th ed. Berlin · Göttingen · Heidelberg: Springer-Verlag.Google Scholar
Coulombre, A.J. (1956). The role of intraocular pressure in the development of the chick eye. Journal of Experimental Zoology 133, 211223.CrossRefGoogle Scholar
Dann, J.F., Buhl, E.H. & Peichl, L. (1987). Dendritic maturation in cat retinal ganglion cells: A Lucifer yellow study. Neuroscience Letters 80, 2126.CrossRefGoogle ScholarPubMed
Dann, J.F., Buhl, E.H. & Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. Journal of Neuroscience 8, 14851499.CrossRefGoogle ScholarPubMed
Dunlop, S.A., Humphrey, M.F. & Beazley, L.D. (1992). Displaced retinal ganglion cells in normal frogs and those with regenerated optic nerves. Anatomy and Embryology 185, 431438.CrossRefGoogle ScholarPubMed
Easter, S.S. (1983). Postnatal neurogenesis and changing connections. Trends in Neurosciences 6, 5356.CrossRefGoogle Scholar
Easter, S.S. & Stuermer, C.A.O. (1984). An evaluation of the hypothesis of shifting terminals in goldfish optic tectum. Journal of Neuroscience 4, 10521063.CrossRefGoogle ScholarPubMed
Feldman, J.D., Gaze, R.M. & Keating, M.J. (1983). Development of the orientation of the visuotectal map in Xenopus. Developmental Brain Research 6, 269277.CrossRefGoogle Scholar
Finlay, B.L. & Pallas, S.L. (1989). Control of cell number in the developing mammalian visual system. Progress in Neurobiology 32, 207234.CrossRefGoogle ScholarPubMed
Hendrickson, A.E. & Youdelis, C. (1984). The morphological development of the human fovea. Ophthalmology 91, 603612.CrossRefGoogle ScholarPubMed
Hinds, J.W. & Hinds, P.L. (1983). Development of retinal amacrine cells in the mouse embryo: Evidence for two modes of formation. Journal of Comparative Neurology 213, 123.CrossRefGoogle ScholarPubMed
Jansen, H.G. & Sanyal, S. (1984). Development and degeneration of retina in rds mutant mice: Electron Microscopy. Journal of Comparative Neurology 224, 7184.CrossRefGoogle ScholarPubMed
Jansen, H.G. & Sanyal, S. (1992). Synaptic plasticity in the rod terminals after partial photoreceptor cell loss in the heterozygous rds mutant mouse. Journal of Comparative Neurology 316, 117125.CrossRefGoogle ScholarPubMed
Kelling, S.T., Sengelaub, D.R., Wikler, K.C. & Finlay, B.L. (1989). Differential elasticity of the immature retina: A contribution to the development of the area centralis?. Visual Neuroscience 2, 117120.CrossRefGoogle Scholar
Kowalewski, G. (1931). Vorlesungen über allgemeine natürliche Geometrie und Liesche Transformationsgruppen. Berlin-Leipzig: Walter de Gruyter & Co.Google Scholar
Leventhal, A.G. & Schall, J.D. (1989). Extrinsic determinants of retinal ganglion cell development in cats and monkeys. In Development of the Vertebrate Retina, ed. Finlay, B.L. & Sengelaub, D.R., pp. 173195. New York & London: Plenum Press.CrossRefGoogle Scholar
Leventhal, A.G., Ault, S.J., Vitek, D.J. & Shou, T. (1989). Extrinsic determinants of retinal ganglion cell development in primates. Journal of Comparative Neurology 286, 170189.CrossRefGoogle ScholarPubMed
Lie, S. & Scheffers, G. (1891). Vorlesungen über Differentialgleichungen mit bekannten infinitesimalen Transformationen. Leipzig: B.G. Teubner-Verlag.Google Scholar
Markham, J.A. & Vaughn, J.E. (1991). Migration patterns of sympathetic preganglionic neurons in embryonic rat spinal cord. Journal of Neurobiology 22, 811822.CrossRefGoogle ScholarPubMed
Mastronarde, D.N., Thibeault, M.A. & Dubin, M.W. (1984). Nonuniform postnatal growth of the cat retina. Journal of Comparative Neurology 228, 598608.CrossRefGoogle ScholarPubMed
McArdle, C.B., Dowling, J.E. & Masland, R.H. (1977). Development of outer segments and synapses in the rabbit retina. Journal of Comparative Neurology 175, 253278.CrossRefGoogle ScholarPubMed
Mitrofanis, J., Robinson, S.R. & Ashwell, K. (1992). Development of catecholaminergic, indoleamine-accumulating and NADPH-diaphorase amacrine cells in rabbit retinae. Journal of Comparative Neurology 319, 560585.CrossRefGoogle ScholarPubMed
Negishi, K., Teranishi, T. & Kato, S. (1984). Regional density of monoamine-accumulating amacrine cells in the rabbit retina. Neuroscience Letters 45, 2732.CrossRefGoogle ScholarPubMed
Osborne, N.N. (1985). Interplexiform, horizontal and bipolar-like cells of the rabbit retina take up exogenous serotonin during early developmental stages. International Journal of Developmental Neuroscience 3, 643646.CrossRefGoogle ScholarPubMed
Packer, O., Hendrickson, A.E. & Curcio, C.A. (1989). Photoreceptor topography of the retina in the adult pigtail macaque (Macaca nemestrina). Journal of Comparative Neurology 288, 165183.CrossRefGoogle ScholarPubMed
Perry, V.H. & Maffei, L. (1988). Dendritic competition: competition for what? Developmental Brain Research 41, 195208.CrossRefGoogle Scholar
Polley, E.H., Zimmerman, R.P. & Fortney, R.L. (1989). Neurogenesis and maturation of cell morphology in the development of the mammalian retina. In Development of the Vertebrate Retina, ed. Finlay, B.L. & Sengelaub, D.R., pp. 330. New York & London: Plenum Press.CrossRefGoogle Scholar
Provis, J.M. & Penfold, P.L. (1988). Cell death and the elimination of retinal axons during development. Progress in Neurobiology 31, 331347.CrossRefGoogle ScholarPubMed
Rager, G. & Rager, U. (1978). Systems matching by degeneration: I. A quantitative electron-microscopic study of the generation and degeneration of retinal ganglion cells in the chicken. Experimental Brain Research, 33, 6578.CrossRefGoogle Scholar
Reh, T.A. & Constantine-Paton, M. (1984). Retinal ganglion cell terminals change their projection sites during larval development of Rana pipiens. Journal of Neuroscience 4, 442457.CrossRefGoogle ScholarPubMed
Reichenbach, A., Reichelt, W. & Schümann, R. (1987). Use of Pappenheim’s panoptic staining method on enzymatically isolated cells for demonstration of postnatal development of the rabbit retina. Zeitschrift für mikroskopisch-anatomische Forschung 101, 597608.Google ScholarPubMed
Reichenbach, A., Schneider, H., Richter, W., Reichelt, W. & Schaaf, W. (1989). The course of axons within the postnatal rabbit retina. Journal für Hirnforschung 30, 505511.Google ScholarPubMed
Reichenbach, A., Schnitzer, J., Friedrich, A., Ziegert, W., Brückner, G. & Schober, W. (1991 a). Development of the rabbit retina. I. Size of eye and retina, and postnatal cell proliferation. Anatomy and Embryology 183, 287297.Google ScholarPubMed
Reichenbach, A., Schnitzer, J., Friedrich, A., Knothe, A.-K. & Henke, A. (1991 b). Development of the rabbit retina. II. Müller cells. Journal of Comparative Neurology 311, 3344.CrossRefGoogle ScholarPubMed
Reichenbach, A., Eberhardt, W., Scheibe, R., Deich, C., Seifert, B., Reichelt, W., Dähnert, K. & Rödenbeck, M. (1991 c). Development of the rabbit retina. IV. Tissue tensility and elasticity in dependence on topographic specializations. Experimental Eye Research 53, 241251.CrossRefGoogle ScholarPubMed
Robinson, S.R. (1991). Development of the mammalian retina. In Neuroanatomy of the Visual Pathways and their Development, ed. Dreher, B. & Robinson, S.R., pp. 69128 (Vol. 3 Of Cronly-Dillon, J.R. (series ed.): Vision and Visual Dysfunction). England: Macmillan.Google Scholar
Robinson, S.R. & Dreher, Z. (1990). Müller cells in adult rabbit retina: morphology, distribution and implications for function and development. Journal of Comparative Neurology 292, 178192.CrossRefGoogle ScholarPubMed
Robinson, S.R., Dreher, B. & McCall, M.J. (1989). Nonuniform retinal expansion during the formation of the rabbit’s visual streak: Implications for the ontogeny of mammalian retinal topography. Visual Neuroscience 2, 201219.CrossRefGoogle ScholarPubMed
Robinson, S.R., Horsburgh, G.M., Dreher, B. & McCall, M.J. (1987). Changes in the number of retinal ganglion cells and optic nerve axons in the developing albino rabbit. Developmental Brain Research 35, 161174.CrossRefGoogle Scholar
Sandell, J.H. & Masland, R.H. (1986). A system of indoleamine-accu-mulating neurons in the rabbit retina. Journal of Neuroscience 6, 33313347.CrossRefGoogle ScholarPubMed
Schnitzer, J. (1985). Distribution and immunoreactivity of glia in the retina of the rabbit. Journal of Comparative Neurology 240, 128142.CrossRefGoogle ScholarPubMed
Schnitzer, J. (1989). Enzyme-histochemical demonstration of microglial cells in the adult and postnatal rabbit retina. Journal of Comparative Neurology 282, 249263.CrossRefGoogle ScholarPubMed
Springer, A. (1989). Topographic organization of the visual pathways. In Development of the Vertebrate Retina, ed. Finlay, B.L. & Sengelaub, D.R., pp. 87112. New York & London: Plenum Press.CrossRefGoogle Scholar
Stuermer, C.A.O. (1988). Retinotopic organization of the developing retinotectal projection in the zebrafish embryo. Journal of Neuroscience 8, 45134530.CrossRefGoogle ScholarPubMed
Van Alphen, G.W.H.M. (1986). Choroidal stress and emmetropization. Vision Research 26, 723734.CrossRefGoogle ScholarPubMed
Vaney, D.I. (1986). Morphological identification of serotonin-accumulating neurons in the living retina. Science 233, 444446.CrossRefGoogle ScholarPubMed
Wikler, K.C. & Finlay, B.L. (1989). Developmental heterochrony and the evolution of species differences in retinal specializations. In Development of the Vertebrate Retina, ed. Finlay, B.L. & Sengelaub, D.R., pp. 227246. New York & London: Plenum Press.CrossRefGoogle Scholar
Wilm, C. & Fritzsche, B. (1992). Evidence for a driving role of ingrowing axons for the shifting of older retinal terminals in the tectum of fish. Journal of Neurobiology 23, 149162.CrossRefGoogle ScholarPubMed
Wong, R.O.L. & Hughes, A. (1987). Role of cell death in the topogenesis of neuronal distributions in the developing cat retinal ganglion cell layer. Journal of Comparative Neurology 262, 496511.CrossRefGoogle ScholarPubMed
Wong, R.O.L. & Collin, S.P. (1989). Dendritic maturation of displaced putative cholinergic amacrine cells in the rabbit retina. Journal of Comparative Neurology 287, 164178.CrossRefGoogle ScholarPubMed
Youdelis, C. & Hendrickson, A.E. (1986). A qualitative and quantitative analysis of the human fovea during development. Vision Research 26, 847855.CrossRefGoogle Scholar