Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T22:48:33.100Z Has data issue: false hasContentIssue false

Development of functional calcium channels in cultured avian photoreceptors

Published online by Cambridge University Press:  02 June 2009

Evanna Gleason
Affiliation:
Department of Zoology, University of California, Davis
Peter Mobbs
Affiliation:
Department of Physiology, University College, London
Richard Nuccitelli
Affiliation:
Department of Zoology, University of California, Davis
Martin Wilson
Affiliation:
Department of Zoology, University of California, Davis

Abstract

Vertebrate photoreceptors are unusual neurons in that they are capable of continuous calcium-mediated release of neurotransmitter (Trifonov, 1968; Hagins et al., 1970). In this study, we have examined the development and characteristics of calcium currents in chick cone cells placed in culture on embryonic day 8. Cone cells were identified by their lectin-binding properties, rhodopsin-like immunoreactivity, and the presence of an oil droplet. Using the whole-cell patch-clamp method, we have seen calcium currents in these cells after three days in culture, slightly before the appearance of synapses (Gleason & Wilson, 1989). Because cone calcium currents are blocked by cadmium and nifedipine but are enhanced by Bay K 8644, they most closely resemble L-type current (Nowycky et al., 1985). An unexpected feature of these currents is that their gating ranges varied widely between cells so that some cells showed the foot of their activation range at —70 mV and others as positive as —25 mV. Calcium imaging of fura-2 loaded cells was used to confirm the time course of calcium current development and describe the distribution of cytosolic calcium. As expected, depolarization of young cells failed to increase cytosolic calcium but in older cells an increase of threefold to fourfold was usually observed. Both at rest and during depolarization, most cone cells showed regional differences in internal calcium concentration. In the most mature cones, depolarization strongly elevated cytosolic calcium at the terminal end of the cell while producing a lesser change around the oil droplet and the ellipsoid region, suggesting that calcium channels are localized to the terminal.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adler, R., Lindsey, J.D. & Elsner, C.C. (1984). Expression of cone-like properties by chick embryo neural retinal cells in glial-free monolayer cultures. Journal of Cell Biology 99, 11731178.CrossRefGoogle ScholarPubMed
Ashmore, J.F. & Copenhagen, D.R. (1980). Different postsynaptic events in two types of retinal bipolar cell. Nature 288, 8486.CrossRefGoogle ScholarPubMed
Attwell, D., Borges, S., wu, S.M. & Wilson, M. (1987). Signal clipping by the rod output synapse. Nature 328, 522524.CrossRefGoogle ScholarPubMed
Ayoub, G.S. & Lam, D.M.K. (1984). The release of gamma-aminobutyric acid from horizontal cells of the goldfish (Crassius auratus) retina. Journal of Physiology 355, 191214.CrossRefGoogle Scholar
Ayoub, G.S., Korenbrot, J.I. & Copenhagen, D.R. (1989). Release of glutamate from isolated cone photoreceptors of the lizard. Neuroscience Research (Suppl.) 10, s4755.Google ScholarPubMed
Bader, C.R., Bertrand, D. & Schwartz, E.A. (1982). Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. Journal of Physiology 331, 253284.CrossRefGoogle ScholarPubMed
Bader, C.R., Bertrand, D., Dupin, E. & Kato, A.C. (1983).Development Of Electrical Membrane Properties In Cultured Avian Neural Crest. Nature 305, 808810.CrossRefGoogle ScholarPubMed
Barnes, S. & Hille, B. (1989). Ionic channels of the inner segment of tiger salamander cone photoreceptors. Journal of General Physiology 94, 719743.CrossRefGoogle ScholarPubMed
Baylor, D.A. & Fuortes, M.G.F. (1970). Electrical responses of single cones in the retina of the turtle. Journal of Physiology 207, 7792.CrossRefGoogle ScholarPubMed
Bean, B.P. (1989). Multiple types of calcium channel in heart muscle and neurons. Modulation by drugs and neurotransmitters. Annals of the New York Academy of Sciences 560, pp. 334345.CrossRefGoogle ScholarPubMed
Blanks, J.C. & Johnson, L.V. (1984). Specific binding of peanut lectin to a class of retinal photoreceptor cells: a species comparison. Investigative Ophthalmology and Visual Science 25, 546577.Google ScholarPubMed
Bray, D. (1970). Surface movements during the growth of single ex-planted neurons. Proceedings of the National Academy of Sciences of the U.S.A. 65, 905910.CrossRefGoogle Scholar
Carbone, E. & Lux, H.D. (1984a). A low voltage-activated calcium conductance in embryonic chick sensory neurons. Biophysical Journal 46, 413418.CrossRefGoogle ScholarPubMed
Carbone, E. & Lux, H.D. (1984b). A low voltage-activated, fully in-activating Ca channel in vertebrate sensory neurons. Nature 310, 501502.CrossRefGoogle Scholar
Carbone, E. & Lux, H.D. (1987). Kinetics and selectivity of a low-voltage-activated calcium current in chick and rat sensory neurones. Journal of Physiology 386, 547570.CrossRefGoogle ScholarPubMed
Cazalis, M., Dayanithi, G. & Nordmann, J.J. (1987). Hormone release from isolated nerve endings of the neurohypophysis. Journal of Physiology 390, 5570.CrossRefGoogle ScholarPubMed
Cervetto, L. & Mcnaughton, P.A. (1986). The effects of phosphodiesterase inhibitors and lanthanum ions on the light sensitive current of toad retinal rods. Journal of Physiology 370, 91109.CrossRefGoogle ScholarPubMed
Cohan, C.S., Conner, J.A. & Kater, S.B. (1987). Electrically and chemically mediated increase in intracellular calcium in neuronal growth cones. Journal of Neuroscience 7, 35883599.CrossRefGoogle ScholarPubMed
Cohen, A.I. (1963). The fine structure of the visual receptors of the pigeon. Experimental Eye Research 2, 8897.CrossRefGoogle ScholarPubMed
Copenhagen, D.R. & Jahr, C.E. (1989). Release of endogenous excitatory amino acids from turtle photoreceptors. Nature 341, 536539.CrossRefGoogle ScholarPubMed
Corey, D.P., Dubinsky, J.M. & Schwartz, E.A. (1984). The calcium current in inner segments of rods from the salamander (Ambystoma tigrinum) retina. Journal of Physiology 354, 557575.CrossRefGoogle ScholarPubMed
Coulombre, A.J. (1955). Correlations of structural and biochemical changes in the developing retina of the chick. American Journal of Anatomy 96, 153190.CrossRefGoogle ScholarPubMed
Cunningham, J.R. & Neal, M.J. (1985). Effect of excitatory amino acids on γaminobutyric acid release from frog horizontal cells. Journal of Physiology 362, 5167.CrossRefGoogle ScholarPubMed
Eckert, R. & Chad, J.E. (1984). Inactivation of Ca channels. Program in Biophysics and Molecular Biology 44, 215267.CrossRefGoogle ScholarPubMed
Fenwick, E.M., Marty, A. & Neher, E. (1982). A patch clamp study of bovine chromaffin cells. Journal of Physiology 331, 577597.CrossRefGoogle ScholarPubMed
Fogelson, A.L. & Zucker, R.S. (1985). Presynaptic calcium diffusion from various arrays of single channels. Implications for transmitter release and synaptic facilitation. Biophysical Journal 48, 10031017.CrossRefGoogle ScholarPubMed
Fox, A.P., Nowycky, M.C. & Tsien, R.W. (1987). Kinetic and pharmacological properties distinguishing three types of calcium currents in chick sensory neurones. Journal of Physiology 394, 149172.CrossRefGoogle ScholarPubMed
Gleason, E. & Wilson, M. (1989). The development of synapses between chick retinal neurons in dispersed culture. Journal of Comparative Neurology 287, 213224.CrossRefGoogle ScholarPubMed
Goodman, C.S. & Spitzer, N.C. (1981). The development of electrical properties of identified neurons in grasshopper embryos. Journal of Physiology 313, 385403.CrossRefGoogle ScholarPubMed
Gottman, K., Dietzel, I.D., Lux, H.D., Huck, S. & Rhorer, H. (1988). Development of inward currents in chick sensory and autonomic neuronal precursor cells in culture. Journal of Neuroscience 8, 37223732.CrossRefGoogle Scholar
Grun, G. (1982). The development of the vertebrate retina: a comparative study. Advances in Anatomy Embryology and Cell Biology 78, 785.Google Scholar
Grynkiewicz, G., Poenie, M. & Tsien, R.Y. (1985). A new generation of calcium indicators with greatly improved fluorescence properties. Journal of Biological Chemistry 260, 34403450.CrossRefGoogle ScholarPubMed
Hagins, W.A., Penn, R.D. & Yoshikami, S. (1970). Dark current and the photocurrent in retinal rods. Biophysical Journal 10, 380412.CrossRefGoogle ScholarPubMed
Hamill, O.P., Marty, A., Neher, E., Sakman, B. & Sigworth, F.J. (1981). Improved patch-clamp methods for recording from cells and cell-free membrane patches. Pfluegers Archiv European Journal of Physiology 391, 85100.CrossRefGoogle ScholarPubMed
Hockberger, P.E., Tseng, H.Y. & Conner, J. (1989). Fura-2 measurements of cultured rat purkinje neurons show dendritic localization of Ca2+ influx. Journal of Neuroscience 9, 22722284.CrossRefGoogle ScholarPubMed
Holz, G.G., Dunlap, K. & Kream, R.M. (1988). Characterization of the electrically evoked release of substance P from dorsal root ganglion neurons: methods and dihydropyridine sensitivity. Journal of Neuroscience 8, 463471.CrossRefGoogle ScholarPubMed
Jack, J.J.B., Noble, D. & Tsien, R.W. (1975). Electric Current Flow in Excitable Cells. Oxford: Oxford University Press.Google Scholar
Lasater, E.M. & Witkovsky, P. (1989). Calcium current in cone photoreceptor synaptic terminals. Society for Neuroscience Abstracts 15, 206.Google Scholar
Lindgren, C. A. & Moore, J.W. (1989). Identification of ionic currents at the presynaptic nerve endings of the lizard. Journal of Physiology 414, 201222.CrossRefGoogle ScholarPubMed
Lipscombe, D., Madison, D.V., Poenie, M., Reuter, H., Tsien, R.Y. & Tsren, R.W. (1988a). Spatial distribution of calcium channels and cytosolic calcium transients in growth cones and cell bodies of sympathetic neurons. Proceedings of the National Academy of Sciences of the U.S.A. 85, 23982402.CrossRefGoogle ScholarPubMed
Lipscombe, D., Madison, D.V., Poenie, M., Reuter, H., Tsien, R.W. & Tsien, R.Y. (1988b). Imaging of cytosolic Ca2+ and transients arising from Ca2+ stores and Ca2+ channels in sympathetic neurons. Neuron 1, 355365.CrossRefGoogle ScholarPubMed
Malecot, C. O., Feindt, P. & Trautwein, W. (1988). Intracellular Nmethyl-D-glucamine modifies the kinetics and voltage-dependence of the calcium current in guinea pig ventricular heart cells. Pfluegers Archiv European Journal of Physiology 411, 235242.CrossRefGoogle ScholarPubMed
Maricq, A.V. & Korenbrot, J.I. (1988). Calcium and calcium-dependent chloride currents generate action potentials in solitary cone photoreceptors. Neuron 1, 503515.CrossRefGoogle ScholarPubMed
Marty, A. & Neher, E. (1985). Potassium channels in cultured bovine adrenal chromaffin cell. Journal of Physiology 367, 117141.CrossRefGoogle Scholar
Mclaughlin, B.J. (1976). A fine structural and E-PTA study of photoreceptor synaptogenesis in the chick retina. Journal of Comparative Neurology 170, 347364.CrossRefGoogle ScholarPubMed
Meyer, D.B. & May, H.C. (1973). The topographical distribution of rods and cones in the adult chicken retina. Experimental Eye Research 17, 347355.CrossRefGoogle ScholarPubMed
Middlemiss, D.N. & Spedding, M. (1985). A functional correlate for the dihydropyridine binding site in rat brain. Nature 314, 9496.CrossRefGoogle ScholarPubMed
Miller, R.J. (1987). Multiple calcium channels and neuronal function. Science 235, 4652.CrossRefGoogle ScholarPubMed
Morris, V.B. & Shorey, C.D. (1967). An electron microscope study of types of receptor in the chick retina. Journal of Comparative Neurology 129, 313340.CrossRefGoogle ScholarPubMed
Morris, V.B. (1970). Symmetry in a receptor mosaic demonstrated in the chick from the frequencies, spacing and arrangement of the types of retinal receptor. Journal of Comparative Neurology 140, 359398.CrossRefGoogle Scholar
Narahashi, T., Tsunoo, A. & Yosnn, M. (1987). Characterization of two types of calcium channels in mouse neuroblastoma cells. Journal of Physiology 383, 231249.CrossRefGoogle ScholarPubMed
Nowycky, M.C., Fox, A.P. & Tsien, R.W. (1985). Three types of neuronal calcium channel with different calcium agonist sensitivity. Nature 316, 440443.CrossRefGoogle ScholarPubMed
Perney, T.M., Hirning, L.D., Leeman, S.E. & Miller, R.J. (1986). Multiple calcium channels mediate neurotransmitter release from peripheral neurons. Proceedings of the National Academy of Sciences of the U.S.A. 83, 66566659.CrossRefGoogle ScholarPubMed
Poenie, M. (1990). Alteration of intracellular fura-2 fluorescence by viscosity: a simple correction. Cell Calcium 11, 8591.CrossRefGoogle ScholarPubMed
Pumplin, D.W., Reese, T.S. & Llinas, R. (1981). Are the presynaptic membrane particles the calcium channels? Proceedings of the National Academy of Sciences of the U.S.A. 78, 72107213.CrossRefGoogle ScholarPubMed
Rane, S.G., Holt, G.G. & Dunlap, K. (1987). Dihydropyridine inhibition of neuronal calcium current and substance P release. Pfluegers Archiv European Journal of Physiology 409, 361366.CrossRefGoogle ScholarPubMed
Ratto, B.M., Payne, R., Owen, W.C. & Tsien, R.Y. (1988). The concentration of cytosolic free calcium in vertebrate rod outer segments measured with Fura-2. Journal of Neuroscience 8, 32403246.CrossRefGoogle ScholarPubMed
Regeher, W.G., Connor, J.A. & Tank, D.W. (1989). Optical imaging of calcium accumulation in hippocampal pyramidal cells during synaptic activation. Nature 341, 533536.CrossRefGoogle Scholar
Roberts, W.M., Jacobs, R.A. & Hudspeth, A.J. (1990). Colocalization of ion channels involved in frequency selectivity and synaptic transmission presynaptic active zones of hair cells. Journal of Neuroscience 10, 36643694.CrossRefGoogle ScholarPubMed
Rodieck, R.W. (1973). The Vertebrate Retina. San Francisco, California: W.H. Freeman and Company.Google Scholar
Schwartz, E.A. (1982). Calcium-independent release of GABA from isolated horizontal cells of the toad retina. Journal of Physiology 323, 211227.CrossRefGoogle ScholarPubMed
Schwartz, E.A. (1986). Synaptic transmission in amphibian retinae during conditions unfavorable for calcium entry into presynaptic terminals. Journal of Physiology 376, 411428.CrossRefGoogle ScholarPubMed
Schwartz, E.A. (1987). Depolarization without calcium can release 7-aminobutyric acid from a retinal neuron. Science 238, 350355.CrossRefGoogle Scholar
Simon, S.M. & Llinas, R.R. (1985). Compartmentalization Of The Sub-Membrane Calcium Activity During Calcium Influx And Its Significance In Transmitter Release. Biophysical Journal 48, 485498.CrossRefGoogle Scholar
Smith, S.J. & Augustine, G.J. (1988). Calcium Ions, Active Zones And Synaptic Transmitter Release. Trends in Neurosciences 11, 458464.CrossRefGoogle ScholarPubMed
Spitzer, N.C. (1983). The development of neuronal membrane properties in vivo and in culture. In Developing and Regenerating Vertebrate Nervous Systems, ed. Coates, P., pp. 4159. New York: Liss.Google Scholar
Tank, D.W., Sugimori, M., Connor, J.N. & Llinas, R.R. (1988). Spatially resolved calcium dynamics of mammalian purkinje cells in cerebellar slice. Science 242, 773777.CrossRefGoogle ScholarPubMed
Trifonov, Y.A. (1968). Study of synaptic transmission between the photoreceptor and the horizontal cell using electrical stimulation of the retina. Biofizika 10, 673680.Google Scholar
Tsien, R.Y. & Harootunian, A. T. (1990). Practical design criteria for a dynamic ratio imaging system. Cell Calcium 11, 93110.CrossRefGoogle ScholarPubMed
van Breemen, C. & De Weer, P. (1970). Lanthanum inhibition of 45C efflux from squid giant axon. Nature 226, 760761.CrossRefGoogle Scholar
White, E.J. & Bradford, H.F. (1986). Enhancement of depolarization-induced synaptosomal calcium uptake and neurotransmitter release by BAY K 8644. Biochemical Pharmacology 35, 21932197.CrossRefGoogle Scholar
Yazulla, S. & Kleinschmidt, J. (1983). Carrier-mediated release of GABA from retinal horizontal cells by potassium and acidic amino acid agonists. Brain Research 263, 6375.CrossRefGoogle Scholar
Zucker, R.S. & Fogelson, A.L. (1986). Relationship between transmitter release and presynaptic calcium influx when calcium enters through discrete channels. Proceedings of the National Academy of Sciences of the U.S.A. 83, 30323036.CrossRefGoogle ScholarPubMed