Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-15T09:19:30.870Z Has data issue: false hasContentIssue false

Convergence of processing channels in the extrastriate cortex of monkeys

Published online by Cambridge University Press:  02 June 2009

Leah Krubitzer
Affiliation:
Department of Psychology, Vanderbilt University, Nashville
Jon Kaas
Affiliation:
Department of Psychology, Vanderbilt University, Nashville

Abstract

The first (V-I) and second (V-II) visual areas of primates contain three types of anatomical segregations of neurons as parts of hypothesized “P-B” or “color”, “P-I” or “form,” and “M” or “motion” processing channels. These channels remain distinct in relays of P-B and P-I information to the inferior temporal lobe via V-II and dorsolateral visual cortex for object recognition, and “M” information to posterior parietal cortex via the middle temporal visual area (MT) for visual tracking and attention. The present anatomical experiments demonstrate another channel where “P-B” modules in V-I and “P-B” and “M” modules in V-II merge in the projections to the dorsomedial visual area (DM), which relays to MT and posterior parietal cortex. This integrative area may function in unifying our perception of the visual world, and may allow “color” as well as “motion” to play a role in visual tracking and attention.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M. & Kass, J.H. (1974). The organization of the second visual area (VII) in the owl monkey: a second transformation of the visual hemifield. Brain Research 76, 247265.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1975). The dorsomedial cortical visual area: a third tier area in the occipital lobe of the owl monkeys (Aotus trivirgatus). Brain Research 100, 473487.CrossRefGoogle Scholar
Allman, J.M. & Kaas, J.H. (1976). Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. Science 191, 572576.CrossRefGoogle ScholarPubMed
Burkhalter, A., Felleman, D.J., Newsome, W.T. & VanEssen, D.C. Essen, D.C. (1986). Anatomical and physiological asymmetries related to visual area V3 and VP in macaque extrastriate cortex. Vision Research 26, 6380.CrossRefGoogle ScholarPubMed
Casagrande, V.A., Beck, P.D. & Lachica, E.A. (1989). Intrinsic connections of cytochrome oxidase (CO) blob and nonblob regions inarea 17 of a nocturnal primate. Society Neuroscience Abstracts 15, 1398.Google Scholar
Cusick, C.G. & Kaas, J.H. (1988 a). Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys. Visual Neuroscience 1, 211237.CrossRefGoogle ScholarPubMed
Cusick, C.G. & Kaas, J.H. (1988 b). Surface view patterns of intrinsic and extrinsic cortical connections of area 17 in a prosimian primate. Brain Research 458, 383388.CrossRefGoogle Scholar
Deyoe, E.A. & Van, Essen D.C. (1985). Segregation of efferent connections and receptive-field properties in visual area V2 of the macaque. Nature 317, 5861.CrossRefGoogle ScholarPubMed
Deyoe, E.A. & Van, Essen D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Van, Essen D.C. (1987). Receptive-field properties of neurons in area V3 of macaque extrastriate cortex. Journal of Neurophysiology 57, 889920.CrossRefGoogle Scholar
Gallyas, F. (1979). Silver staining of myelin by means of physical development. Neurology Research 1, 203209.CrossRefGoogle ScholarPubMed
Jacobs, G.H. (1977). Visual capacities of the owl monkey (A ot us trivirgatus), I: Spectral sensitivity and color vision. Vision Research 17, 811820.CrossRefGoogle Scholar
Kaas, J.H. (1989). Why does the brain have so many visual areas? Journal of Cognitive Neuroscience 1, 121135.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Krubitzer, L.A. (1990). The organization of visual cortex in Old World monkeys: studies on the miniature species, Miopithecus talapoin. Investigative Ophthalmology and Visual Science (Suppl.) 31, 398.Google Scholar
Krubitzer, L.A. & Kaas, J.H. (1989). Cortical integration of parallel pathways in the visual system of primates. Brain Research 478, 161165.CrossRefGoogle ScholarPubMed
Krubitzer, L.A. & Kaas, J.H. (1990). Cortical connections of MT in four species of primates: areal, modular, and retinotopic patterns. Visual Neuroscience 5, 165204.CrossRefGoogle ScholarPubMed
Lin, C.S., Weller, R.E. & Kaas, J.H. (1982). Cortical connections of striate cortex in the owl monkey. Journal of Comparative Neurology 211, 165176.CrossRefGoogle ScholarPubMed
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van, Essen D.C. (1983). The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. Journal of Neuroscience 3, 25632586.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10, 363401.CrossRefGoogle ScholarPubMed
Mesulum, M.M. (1978). Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: a non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.CrossRefGoogle Scholar
Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983). Object vision and spatial vision: two cortical pathways. Trends in Neuroscience 6, 414417.CrossRefGoogle Scholar
Petersen, S.E., Miezin, F.M. & Allman, J.M. (1988). Transient and sustained responses in four extrastriate visual areas of the owl monkey. Experimental Brain Research 70, 5560.CrossRefGoogle ScholarPubMed
Shipp, S. & Zeki, S. (1989 a). The organization of connections between areas VI and V5 of macaque monkey visual cortex. European Journal of Neuroscience 1, 309332.CrossRefGoogle Scholar
Shipp, S. & Zeki, S. (1989 b). The organization of connections between areas V2 and V5 of macaque monkey visual cortex. European Journal of Neuroscience 1, 333354.CrossRefGoogle ScholarPubMed
Tootell, R.B.H., Hamilton, S.L. & Silverman, M.S. (1985). Topography of cytochrome oxidase activity in owl monkey cortex. Journal of Neuroscience 5, 27862800.CrossRefGoogle ScholarPubMed
Ungerleider, L.G. & Desimone, R. (1986). Cortical connections of visual area MT in the macaque. Journal of Comparative Neurology 348, 190222.CrossRefGoogle Scholar
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, J.D., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge, Massachusetts: MIT Press.Google Scholar
Van, Essen D.C., Maunsell, J.H.R. & Bixby, J.L. (1981). The middle temporal visual area in the macaque: myeloarchitecture, connections, functional properties, and topographic organization. Journal of Comparative Neurology 199, 293326.Google Scholar
Wagor, E., Lin, C.S. & Kaas, J.H. (1975). Some cortical projections of the dorsomedial visual area (DM) of association cortex in the owl monkey, Aotus trivirgatus. Journal of Comparative Neurology 163, 227250.CrossRefGoogle ScholarPubMed
Wall, J.T., Symonds, L.L. & Kaas, J.H. (1982). Cortical and subcortical projections of the middle temporal area (MT) and adjacent cortex in galagos. Journal of Comparative Neurology 211, 193214.CrossRefGoogle ScholarPubMed
Weller, R.E. & Kaas, J.H. (1982). The organization of the visual system in Galago: comparisons with monkeys. In The Lesser Bush Baby (Galago) as an Animal Model: Selected Topics, ed. Haines, P.E., pp. 107135, Boca Raton, Florida: CAC Press.Google Scholar
Weller, R.E., Wall, J.T. & Kaas, J.H. (1984). Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys. Journal of Comparative Neurology 228, 81104.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed
Zeki, S. & Shipp, S. (1988). The functional logic of cortical connections. Nature 355, 311317.CrossRefGoogle Scholar