Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-25T05:51:52.888Z Has data issue: false hasContentIssue false

Contacts of dopaminergic interplexiform cells in the outer retina of the blue acara

Published online by Cambridge University Press:  02 June 2009

Hans-Joachim Wagner
Affiliation:
Institut für Anatomie und Zellbiologie der Philipps Universität, Marburg, Germany
Irina Wulle
Affiliation:
Institut für Anatomie und Zellbiologie der Philipps Universität, Marburg, Germany

Abstract

Dopaminergic interplexiform cells in the retina of the blue acara were investigated using an antiserum against tyrosine hydroxylase and PAP visualization. In whole-mount preparations, we observed a homogeneous distribution of cell bodies throughout the retina without any indication of regional specialization. At the fine and ultrastructural level, we studied the morphology of labeled telodendria within the outer plexiform layer. Apart from contacts with horizontal cell perikarya and bipolar cell dendrites, we observed direct contacts, mostly in the form of close appositions, with cone pedicles and rod spherules. Quantitative evaluation and reconstruction of serial sections showed that all cone pedicles and most rod terminals were approached in this way. The dopaminergic pathway terminating on horizontal cells and photoreceptors is discussed with respect to the localization of dopamine receptors in the outer retina, and the control of adaptive changes such as retinomotor movements, spinule formation, and horizontal cell coupling.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Besharse, J.C., Iuvone, P.M. & Pierce, M.E. (1988). Regulation of rhythmic photoreceptor metabolism: A role for post-receptoral neurons. In Progress in Retinal Research, Vol. 7, ed. Osborne, N. & Chader, G., pp. 761. Oxford: Pergamon Press.Google Scholar
Burnside, B., Pagh-Roehl, K., Wang, E. & Kirsch, M. (1991). Myoid motility in highly purified preparations of teleost cone inner-outer segments (CIS-COS). Investigative Ophthalmology and Visual Science 32, 847.Google Scholar
Dacey, D.M. (1990). The dopaminergic amacrine cell. Journal of Comparative Neurology 301, 461489.CrossRefGoogle ScholarPubMed
Dearry, A. & Burnside, B. (1986). Dopaminergic regulation of cone retinomotor movement in isolated teleost retinas: I. Induction of cone contraction is mediated by D2-receptors. Journal of Neurochemistry 46, 10061021.CrossRefGoogle ScholarPubMed
Dearry, A. & Burnside, B. (1989). Light-induced dopamine release from teleost retinas acts as light adaptive signal to the retinal pigment epithelium. Journal of Neurochemistry 53, 870878.CrossRefGoogle Scholar
Douglas, R.H., Wagner, H.-J., Zaunreiter, M. & Djamgoz, M.B.A. (1992). The effect of dopamine depletion on light-evoked and circadian retinomotor movements in the teleost retina. Visual Neuroscience 9, 335343.Google Scholar
Dowling, J.E. & Ehinger, B. (1978). The interplexiform cell system I. Synapses of the dopaminergic neurons in the goldfish retina. Proceedings of the Royal Society B (London) 201, 726.Google Scholar
Ehinger, B., Falck, B. & Laties, A.M. (1969). Adrenergic neurons in teleost retina. Zeitschrift für Zellforschung und mikroskopische Anatomie 97, 285297.CrossRefGoogle ScholarPubMed
Elena, P.P., Denis, P., Kosina-Boix, M. & Lapulus, P. (1989). Dopamine receptors in rabbit and rat eye; characterization and localization of DA1 and DA2 binding sites. Current Eye Research 8, 7583.CrossRefGoogle ScholarPubMed
Frederick, J.M., Rayborn, M.E., Laties, A.M., Lam, D.M.-K. & Hollyfield, J.G. (1982). Dopaminergic neurons in the human retina. Journal of Comparative Neurology 210, 6579.CrossRefGoogle ScholarPubMed
Gáabriel, R., Zhu, B. & Straznicky, C. (1991). Tyrosine hydroxylase-immunoreactive elements in the distal retina of Bufo marinus: A light and electron microscope study. Brain Research 559, 225232.CrossRefGoogle Scholar
Hedden, W.L. Jr & Dowling, J.E. (1978). The interplexiform cell system: II. Effects of dopamine on goldfish retinal neurons. Proceedings of the Royal Society B (London) 201, 2755.Google Scholar
Jensen, R.J. & Daw, N.W. (1986). Effects of dopamine and its antagonists on the receptive field properties of ganglion cells in the rabbit retina. Neuroscience 17, 837855.Google Scholar
Kalloniatis, M. & Marc, R. (1990). Interplexiform cells of the gold-fish retina. Journal of Comparative Neurology 297, 340358.CrossRefGoogle Scholar
Kebabian, J.W. & Calne, D.B. (1979). Multiple receptors for dopamine. Nature (London) 277, 9396.CrossRefGoogle ScholarPubMed
Kirsch, M., Wagner, H.-J. & Djamgoz, M.B.A. (1989). Dopamine controls light-adaptive spinule formation and feedback activity of horizontal cells in teleost retina. Investigative Ophthalmology and Visual Science 30, 19.Google Scholar
Kirsch, M., Wagner, H.-J. & Djamgoz, M.B.A. (1991). Dopamine and plasticity of horizontal cell function in the teleost retina: Regulation of a spectral mechanism through Dl-receptors. Vision Research 31, 401412.Google Scholar
Knapp, A.G. & Dowling, J.E. (1987). Dopamine enhances excitatory amino acid-gated conductances in cultured retinal horizontal cells. Nature 325, 437439.CrossRefGoogle ScholarPubMed
Kurz-Isler, G. & Wolburg, H. (1988). Light dependent dynamics of gap junctions between horizontal cells in the retina of the crucian carp. Cell and Tissue Research 251, 641649.Google Scholar
Linberg, K.A. & Fisher, S.K. (1986). An ultrastructural study of interplexiform cell synapses in the human retina. Journal of Comparative Neurology 243, 561576.CrossRefGoogle ScholarPubMed
Mangel, S.C. & Dowling, J.E. (1987). The interplexiform-horizontal cell system of the fish retina: Effects of dopamine, light stimulation and time in the dark. Proceedings of the Royal Society B (London) 231, 91121.Google Scholar
Negishi, K., Teranishi, T. & Kato, S. (1981a). 5, 7-dihydroxytryptamine destroys indoleamine-accumulating cell bodies in carp retina. Acta Histochemica Cytochemica 14, 654660.CrossRefGoogle Scholar
Negishi, K., Teranishi, T. & Kato, S. (1981b). Density of retinal do-paminergic cells and indoleamine-accumulating cells in different-sized carp. Acta Histochemica Cytochemica 14, 596606.CrossRefGoogle Scholar
Nguyen-Legros, J., Moussafi, F. & Simon, A. (1990). Sclerally directed proxcesses of dopaminergic interplexiform cells reach the outer nuclear layer in rat and monkey retina. Visual Neuroscience 4, 547553.Google Scholar
Piccolino, M., Neyton, J. & Gerschenfeld, H.M. (1984). Decrease of gap junction permeability induced by dopamine and cyclic adenosine 3',5'-monophosphate in horizontal cells of turtle retina. Journal of Neuroscience 4, 24772488.CrossRefGoogle ScholarPubMed
Pierce, M.E. & Besharse, J.C. (1985). Circadian regulation of retino-motor movements: I. Interaction of melatonin and dopamine in the control of cone length. Journal of General Physiology 86, 671689.Google Scholar
Sternberger, L.A. (1979). Immunocytochemistry, 2nd ed. New York: John Wiley & Sons, Inc.Google Scholar
Stoof, J.C. & Kebabian, J.W. (1984). Two dopamine receptors: Bio-chemistry, physiology and pharmacology. Life Sciences 35, 22812296.CrossRefGoogle Scholar
Teranishi, T., Negishi, K. & Kato, S. (1983). Dopamine modulates S-potential amplitude and dye-coupling between horizontal cells in carp retina. Nature (London) 301, 243246.Google Scholar
Teranishi, T., Negishi, K. & Kato, S. (1984). Regulatory effects of do-pamine on spatial properties of horizontal cells in carp retina. Journal of Neuroscience 4, 12711280.CrossRefGoogle Scholar
Teranishi, T. & Negishi, K. (1989). Dendritic morphology of retinal dopamine cells in carp of different sizes. Developmental Brain Research 47, 275280.Google Scholar
Van Haesendonck, E., Marc, R.E. & Missotten, L. (1991). Electron microscopic immunocytochemistry of the dopaminergic interplexiform cell arborization in the outer plexiform layer of the goldfish. Investigative Ophthalmology and Visual Science 32, 1260.Google Scholar
Wagner, H.-J. (1978). Cell types and connectivity patterns in mosaic retinas. Advances in Anatomy and Embryology 55, 181.Google Scholar
Wagner, H.-J. (1980). Light dependent plasticity of the morphology of horizontal cell terminals in cone pedicles of fish retinas. Journal of Neurocytology 9, 573590.CrossRefGoogle ScholarPubMed
Wagner, H.-J. (1990). Retinal structure of fishes. In The Visual System of Fish, ed. Douglas, R.H. & Djamgoz, M.B.A., pp. 109156. London: Chapman and Hall.CrossRefGoogle Scholar
Wagner, H.-J. (1991). Dopaminergic control mechanisms of light adaptive processes in teleost retinal morphology. Neuroscience Research (Suppl.) 11, 51315143.Google Scholar
Wagner, H.-J. & Wulle, I. (1990). Dopaminergic interplexiform cells contact photoreceptor terminals in catfish retina. Cell and Tissue Research 261, 359365.CrossRefGoogle Scholar
Wagner, H.-J., Behrens, U.D., Zaunreiter, M. & Douglas, R.H. (1992). The circadian component of spinule dynamics in teleost retinal horizontal cells is dependent on the dopaminergic system. Visual Neuroscience 9, 345351.CrossRefGoogle ScholarPubMed
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google ScholarPubMed
Weiler, R., Kohler, K., Kirsch, M. & Wagner, H.-J. (1988a). Glutamate and dopamine induce synaptic plasticity in horizontal cell dendrites of fish retina. Neuroscience Letters 87, 205209.Google Scholar
Weiler, R., Kohler, K., Kolbinger, W., Wolburg, H., Kurz-Isler, G. & Wagner, H.-J. (1988b). Dopaminergic neuromodulation in the retinas of lower vertebrates. Neuroscience Research (Suppl.) 8, S183–S196.Google ScholarPubMed
Wulle, I., Kirsch, M. & Wagner, H.-J. (1990). Cyclic changes in do-pamine and DOPAC content, and tyrosine hydroxylase activity in the retina of a cichlid fish. Brain Research 515, 163167.Google Scholar
Yazulla, S. & Zucker, C.L. (1988). Synaptic organization of dopaminergic interplexiform cells in the goldfish retina. Visual Neuroscience 1, 1329.CrossRefGoogle ScholarPubMed
Zaunreiter, M. & Wagner, H.-J. (1991). Dopaminergic interplexiform cells contact photoreceptor terminals in teleosts. Investigative Ophthalmology and Visual Science 32, 1260.Google Scholar