Published online by Cambridge University Press: 02 June 2009
When a bar of light (215 x 5000 μm) illuminates the receptive field of an ON-β ganglion cell of cat retina, the cell depolarizes. Intracellular recording from the cat eyecup preparation shows that this depolarization is due to an increase in conductance (2.4 ± 0.6 nS). Different phases of this depolarization have different reversal potentials, but all of these reversal potentials are more positive than the cell’s resting potential in the dark. When the light is turned on, there is an initial transient depolarization; the reversal potential measured for this transient is positive (23 ± 11 mV). As the light is left on, the cell partially repolarizes to a sustained depolarization; the reversal potential measured for this sustained depolarization is close to zero (−1 ± 5 mV). When the light is turned off, the cell repolarizes further; the reversal potential measured for this repolarization is negative (−18 ± 7 mV), but still above the resting potential in the dark (−50 mV). To explain this variety of reversal potentials, at least two different synaptic conductances are required: one to ions which have a positive reversal potential and another to ions which have a negative reversal potential. Comparing the responses to broad and narrow bars suggests that these two conductances are associated with the center and surround, respectively. Finally, since an ON-β cell in the area centralis receives about 200 synapses, these results indicate that a single synapse produces an average conductance increase of about 15 pS during a near-maximal depolarization.