Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:45:32.194Z Has data issue: false hasContentIssue false

Color discrimination ellipses of trichromats measured with transient and steady state visual evoked potentials

Published online by Cambridge University Press:  03 July 2008

BRUNO D. GOMES*
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
GIVAGO S. SOUZA
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
MONICA G. LIMA
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
ANDERSON R. RODRIGUES
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
CÉZAR A. SAITO
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
MANOEL DA SILVA FILHO
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil
LUIZ CARLOS L. SILVEIRA
Affiliation:
Departamento de Fisiologia, Instituto de Ciências Biológicas, Universidade Federal do Pará, Brazil Núcleo de Medicina Tropical, Universidade Federal do Pará, Brazil
*
Address correspondence and reprint requests to: Bruno Duarte Gomes, Universidade Federal do Pará, Núcleo de Medicina Tropical, Av. Generalíssimo Deodoro 92, 66055-240 Belém-Pará, Brazil. E-mail: [email protected]

Abstract

The purpose of this work is to investigate the use of different forms of visual evoked potentials (VEPs) to measure color discrimination thresholds and to plot color discrimination ellipses (MacAdam, 1942). Five normal trichromats (24.5 ± 2.6 years-old) were monocularly tested. Stimuli consisted of sinusoidal isoluminant chromatic gratings made from chromaticity pairs located along four different color directions radiating from one reference point of the CIE 1976 chromaticity diagram (u′ = 0.225; v′ = 0.415). Heterochromatic flicker photometry (HFP) was used to obtain the isoluminance condition for every subject and for all chromaticity pairs. VEPs were elicited using two cycles per degree grating stimuli at three different temporal configurations: transient, onset (300 ms)/offset (700 ms), 1 Hz fundamental frequency; steady-state, onset (50 ms)/offset (50 ms), 10 Hz fundamental frequency; and steady-state pattern reversal at 5 Hz fundamental frequency (10 Hz phase reversal). VEP amplitude was measured using transient VEP N1-P1 components and steady state VEP first (10 Hz) and second (20 Hz) harmonics. VEP amplitude was plotted as a function of chromatic distance in the CIE 1976 color space and the data points were extrapolated to zero amplitude level to obtain chromatic discrimination thresholds. The results were compared with psychophysical measurements performed using the same stimulus configurations and with the pseudoisochromatic method of Mollon-Reffin (one-way ANOVA). For all subjects and all stimulation methods, the ellipses showed small sizes, low ellipticities, and were vertically oriented. Despite some consistent differences in the results obtained with different procedures, there was no statistical difference between ellipses obtained electrophysiologically and psychophysically. For steady state VEPs, ellipses obtained from second harmonic amplitudes were larger and more elongated in the tritan direction than those obtained with first harmonic amplitudes.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Baseler, H.A. & Sutter, E.E. (1997). M and P components of the VEP and their visual field distribution. Vision Research 37, 675690.CrossRefGoogle ScholarPubMed
Berninger, T.A., Arden, G.B., Hogg, C.R. & Frumkes, T. (1989). Separable evoked retinal and cortical potentials from each major visual pathway: Preliminary results. British Journal of Ophthalmology 73, 502511.CrossRefGoogle ScholarPubMed
Boon, M.Y., Suttle, C.M. & Henry, B. (2005). Estimating chromatic contrast thresholds from the transient visual evoked potential. Vision Research 45, 23672383.CrossRefGoogle ScholarPubMed
Brainard, D.H. (1996). Cone contrast and opponent modulation color spaces. In Human Color Vision, eds. Kaiser, P.K. & Boynton, R.M., second edition, pp. 563579. Washington, DC: Optical Society of America.Google Scholar
Carden, D., Kulikowski, J.J., Murray, I.J. & Parry, N.R.A. (1985). Human occipital potentials evoked by the onset of equiluminant chromatic gratings. Journal of Physiology (London) 369, 44.Google Scholar
Crognale, M.A., Kelly, J.P., Weiss, A.H. & Teller, D.Y. (1998). Development of the spatio-chromatic visual evoked potential (VEP): A longitudinal study. Vision Research 38, 32833292.CrossRefGoogle ScholarPubMed
Crognale, M.A., Switkes, E., Rabin, J., Schneck, M.E., Haegerstrom-Portnoy, G. & Adams, A.J. (1993). Application of the spatiochromatic visual evoked potential to detection of congenital and acquired color-vision deficiencies. Journal of the Optical Society of America 10, 18181825.CrossRefGoogle ScholarPubMed
Dacey, D.M. & Lee, B.B. (1994). The blue ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type. Nature 367, 731735.CrossRefGoogle ScholarPubMed
Gomes, B.D., Souza, G.S.S., Rodrigues, A.R., Saito, C.A., da Silva Filho, M. & Silveira, L.C.L. (2006). Normal and dichromatic color discrimination measured with transient visual evoked potential. Visual Neuroscience 23, 617627.CrossRefGoogle ScholarPubMed
Ishihara, S. (1997). Ishihara's Tests for Color Defficency, 38 Plates Edition, pp. 38. Tokyo, Japan: Kanehara.Google Scholar
Kulikowski, J.J., McKeefry, D.J. & Robson, A.G. (1997). Selective stimulation of color mechanisms: An empirical perspective. Spatial Vision 10, 379402.Google ScholarPubMed
Kulikowski, J.J., Robson, A.G. & McKeefry, D.J. (1996). Specificity and selectivity of chromatic visual evoked potentials. Vision Research 36, 33973401.CrossRefGoogle ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989). Sensitivity of macaque retinal anglion cells to hromatic and luminance flicker. Journal of Physiology (London), 414, 223243.CrossRefGoogle Scholar
MacAdam, D.L. (1942). Visual sensitivities to color differences in daylight. Journal of the Optical Society of America 32, 247274.CrossRefGoogle Scholar
Macaluso, C., Baratta, G., Lamedica, A. & Luani, D. (1994). Electrophysiological determination of MacAdam ellipses. A VEP study. Investigative Ophthalmology and Visual Science 35, 1977.Google Scholar
Macaluso, C., Lamedica, A., Baratta, G. & Cordella, M. (1996). Color discrimination along the cardinal chromatic axes with VECPs as an index of function of the parvocellular pathway. Correspondence of intersubject and axis variations to psychophysics. Electroencephalography and Clinical Neurophysiology 100, 1217.CrossRefGoogle ScholarPubMed
McKeefry, D.J., Russell, M.H.A., Murray, I.J. & Kulikowski, J.J. (1996). Amplitude and phase variation of harmonic components in human achromatic and chromatic visual evoked potentials. Visual Neuroscience 13, 639653.CrossRefGoogle Scholar
Meigen, T. & Bach, M. (2000). On the statistical significance of electrophysiological steady-state responses. Documenta Ophthalmologica 98, 207232.CrossRefGoogle Scholar
Mollon, J.D. & Reffin, J.P. (1989). A computer controlled color vision test that combines the principles of Chibret and Stilling. Journal of Physiology (London) 414, 5P.Google Scholar
Momose, K. & Niwa, Y. (2004). Measurement of color discrimination threshold using visually evoked potential and its correlation with psychophysical measure. Engineering in Medicine and Biology Society. 26th Annual International Conference of the IEEE, 1, 168171.Google ScholarPubMed
Murray, I.J. (1983). Frequency analysis of human transient visual evoked potential. Journal of Physiology (London) 337, 2122.Google Scholar
Murray, I.J., Parry, N.R.A., Carden, D. & Kulikowski, J.J. (1987). Human visual evoked potentials to chromatic and achromatic gratings. Clinical Vision Sciences 3, 231244.Google Scholar
Odom, J.V., Bach, M., Barber, C., Brigell, M., Marmor, M.F., Tormene, A.P., Holder, G.E. & Vaegan, XX. (2004). Visual evoked potentials standard (2004). Documenta Ophthalmologica 108, 115123.CrossRefGoogle ScholarPubMed
Porciatti, V. & Sartucci, F. (1996). Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119, 723740.CrossRefGoogle ScholarPubMed
Porciatti, V. & Sartucci, F. (1999). Normative data for onset VEPs to red-green and blue-yellow chromatic contrast. Clinical Neurophysiology 110, 772781.CrossRefGoogle ScholarPubMed
Rabin, J., Switkes, E., Crognale, M., Schneck, M.E. & Adams, A.J. (1994). Visual evoked potentials in three-dimensional color space: correlates of spatio-chromatic processing. Vision Research 34, 26572671.CrossRefGoogle ScholarPubMed
Regan, B.C., Reffin, J.P. & Mollon, J.D. (1994). Luminance noise and the rapid determination of discrimination ellipses in color deficiency. Vision Research 34, 12791299.CrossRefGoogle Scholar
Regan, D. (1973). Evoked potentials specific to spatial patterns of luminance and color. Vision Research 13, 23812402.CrossRefGoogle Scholar
Rodrigues, A.R., Botelho de Souza, C.R., Braga, A.M., Rodrigues, P.S.S., Silveira, A.T., Damin, E.T.B., Côrtes, M.I.T., Castro, A.J.O., Mello, G.A., Vieira, J.L.F., Pinheiro, M.C.N., Ventura, D.F. & Silveira, L.C.L. (2007). Mercury toxicity: Contrast sensitivity and color discrimination of subjects exposed to mercury. Brazilian Journal of Medical and Biological Research 40, 415424.CrossRefGoogle ScholarPubMed
Rudvin, I. & Valberg, A. (2005). Visual evoked potentials for red-green gratings reversing at different temporal frequencies: Asymmetries with respect to isoluminance. Visual Neuroscience 22, 735747.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Grünert, U., Kremers, J., Lee, B.B. & Martin, P.R. (2005). Comparative anatomy and physiology of the primate retina. In The Primate Visual System: A Comparative Approach, ed. Kremers, J., pp. 127160. Chichester, UK: John Wiley & Sons.CrossRefGoogle Scholar
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.CrossRefGoogle Scholar
Souza, G.S.S., Gomes, B.D., Saito, C.A., da Silva Filho, M. & Silveira, L.C.L. (2007). Spatial luminance contrast sensitivity measured with transient VEP: Comparison with psychophysics and evidence for multiple mechanisms. Investigative Ophthalmology and Visual Science 48, 33963404.CrossRefGoogle ScholarPubMed
Sun, H., Smithson, H., Zaidi, Q. & Lee, B.B. (2006a). Specificity of cone inputs to macaque ganglion cells. Journal of Neurophysiology 95, 837849.CrossRefGoogle Scholar
Sun, H., Smithson, H., Zaidi, Q. & Lee, B.B. (2006b). Do magnocellular and parvocellular ganglion cells avoid short-wavelength cone input? Visual Neuroscience 23, 323330.CrossRefGoogle ScholarPubMed
Suttle, C.M. & Harding, G.F.A. (1999). Morphology of transient VEPs to luminance and chromatic pattern onset and offset. Vision Research 39, 15771584.CrossRefGoogle ScholarPubMed
Tobimatsu, S., Tomoda, H. & Kato, M. (1995). Parvocellular and magnocellular contributions to visual evoked potentials in humans: Stimulation with chromatic and achromatic gratings and apparent motion. Journal of the Neurological Sciences 134, 7382.CrossRefGoogle ScholarPubMed