Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T09:02:57.578Z Has data issue: false hasContentIssue false

Chemically specific retinal ganglion cells collaterlize to the Pars ventralis of the lateral geniculate nucleus and optic tectum in the pigeon (Columba livia)

Published online by Cambridge University Press:  02 June 2009

Luiz R. G. Britto
Affiliation:
Department of Pysiology and Biophysics, Institule for Biomedical Sciences, Sāo Paulo State University (USP), Sāo Paulo, Brazil
Kent T. Keyser
Affiliation:
Department of Neurosiences, School of Medicine, University of California at San Diego, La Jolla
Dania E. Hamassaki
Affiliation:
Department of Pysiology and Biophysics, Institule for Biomedical Sciences, Sāo Paulo State University (USP), Sāo Paulo, Brazil
Toru Shimizu
Affiliation:
Department of Neurosiences, School of Medicine, University of California at San Diego, La Jolla
Harvey J. Karten
Affiliation:
Department of Neurosiences, School of Medicine, University of California at San Diego, La Jolla

Abstract

Immunohistochemical and retrograde tracing techniques were combined to study the retinal ganglion cells which project to the pars ventralis of the lateral geniculate nucleus (GLv) in the pigeon. Using two different fluorescent tracers, two histochemically-distinct populations of ganglion cells were found to project to both the GLv and the optic tectum. The first population of ganglion cells exhibited tyrosine hydroxylase-like immunoreactivity and represented about 20% of all ganglion cells which were retrogradely labeled from the GLv. The second population of ganglion cells showed substance P-like immunoreactivity and represented about 13% of all ganglion cells projecting to the GLv. These results confirm earlier suggestions that the retinal axons projecting to the GLv also project elsewhere and demonstrate that heterogeneity of retinal ganglion cells transmitters is evident even within a single retino-recipient nucleus such as the GLv.

Type
Short Communication
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brecha, N., Johnson, D., Bolz, J., Sharma, S., Parnavelas, J.G. & Lieberman, A.R. (1978). Substance p-immunoreactive retinal ganglion cells and their central axon terminals in the rabbit. Nature 327, 155158.CrossRefGoogle Scholar
Britto, L.R.G., Keyser, K.T., Hamssaki, D.E. & Karten, H.J. (1988). Catecholaminergic subpopulation of retinal displaced ganglion cells projects to the accessory optic nucleus in the pigeon (Columba livia). Journal of Comparative Neurology 269, 109117.CrossRefGoogle Scholar
Buettner, U. & Fuchs, A.F. (1973). Influence of saccadic eye movements on unit activity in simian lateral geniculate and pregeniculate nuclei. Journal of Neurophysiology 36, 127141.CrossRefGoogle Scholar
Card, J.P. & Moore, R.Y. (1982). Ventral lateral geniculate nucleus efferents to the rat suprachiasmatic nucleus exhibit avian pancreatic polypeptide-like immunoreactivity. Journal of Comparative Neurology 206, 390396.CrossRefGoogle Scholar
Cowan, W.M., Adamson, L. & Powell, T.P.S. (1961). An experimental study of the avian visual system. Journal of Anatomy 95, 545563.Google ScholarPubMed
Ehrlich, D., Keyser, K.T. & Karten, H.J. (1987). The distribution of substance P-like immunoreactive retinal ganglion cells and their pattern of termination in the optic tectum of chick (Callus gallus). Journal of Comparative Neurology 266, 220233.CrossRefGoogle Scholar
Eldred, W.D. & Cheung, K. (1989). Immunocytochemical localization of glycine in the retina of the turtle (Pseudemys scripta). Visual Neuroscience 2, 331338.CrossRefGoogle ScholarPubMed
Eldred, W.D., lsayama, T., Reiner, A. & Carraway, R. (1988). Ganglion cells in the turtle retina contain the neuropeptide, LANT-6. Journal of Neuroscience 8, 119132.CrossRefGoogle ScholarPubMed
Gamlin, P.D. & Cohen, D.H. (1988). Projections of the retino-recipient pretectal nuclei in the pigeon (Columba livia). Journal of Comparative Neurology 269, 1846CrossRefGoogle ScholarPubMed
Giolli, R.A., Torigoe, Y. & Blanks, R.H. (1988). Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study. Journal of Comparative Neurology 269, 7386.CrossRefGoogle Scholar
Graybiel, A.M. (1974). Visuo-cerebellar and cerebello-visual connections involving the ventral lateral geniculate nucleus. Experimental Brain Research 20, 303306.CrossRefGoogle ScholarPubMed
Guiloff, G.D., Maturana, H.R. & Varela, F.J. (1987). Cytoarchitecture of the avian ventral lateral geniculate nucleus. Journal of Comparative Neurology 264, 509526.CrossRefGoogle ScholarPubMed
Hale, P.T. & Sefton, A.J. (1978). A comparison of the visual and electrical response properties of cells in the dorsal and ventral lateral geniculate nuclei. Brain Research 153, 591595.CrossRefGoogle ScholarPubMed
Hayes, B.P. (1982). The structural organization of the pigeon retina. Progress in Retinal Research 1, 197226.CrossRefGoogle Scholar
Hughes, C.P. & Ater, S.B. (1977). Receptive-field properties in ventral lateral geniculate nucleus of the cat. Brain Research 335, 257279.Google Scholar
Hughes, C.P. & Chi, D.Y.K. (1983). Visual function in the ventral lateral geniculate nucleus of the cat. Experimental Neurology 79, 611621.CrossRefGoogle ScholarPubMed
Jones, E.G. (1985). The Thalamus. New York: Plenum Press.CrossRefGoogle Scholar
Karten, H.J., Keyser, K.T. & Brecha, N.C. (1989). Biochemical and morphological heterogeneity of retinal ganglion cells. In Vision and the Brain: The Organization of the Central Visual System, ed. Cohen, B. & Bodis-Wollner, I., New York: Raven Press (in press).Google Scholar
Katz, L.C., Burkhalter, A. & Dreyer, W.J. (1984). Fluorescent latex microspheres as a retrograde neuronal marker for in vivo and in vitro studies of visual cortex. Nature 310, 498500.CrossRefGoogle ScholarPubMed
Katz, L.C. & Iarovici, D.M. (1988). Green fluorescent latex micro- spheres: a new retrograde tracer. Society for Neuroscience Abstracts 14, 548.Google Scholar
Keyser, K.T., Britto, L.R.G. & Karten, H.J. (1987). Catecholaminergic ganglion cells in the retina of the pigeon. Society for Neuroscience Abstracts 13, 1058.Google Scholar
Keyser, K.T., Britto, L.R.G., Woo, J-I., Park, D.H., Joh, T.H. & Karten, H.J. (1989). Presumptive catecholaminergic ganglion cells in the pigeon retina. Visual Neuroscience (submitted).Google Scholar
Kuijis, R.O. & Karten, H.J. (1983). Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. Journal of Comparative Neurology 217, 239251.Google Scholar
Kuljis, R.O. & Karten, H.J. (1986). Substance P-containing ganglion cells become progressively less detectable during retinotectal development in the frog (Rana pipiens). Proceedings of the National Academy of Sciences of the U.S.A. 83, 57365740.CrossRefGoogle ScholarPubMed
Legg, C.A. (1979). An autoradiographic study of the efferent projections of the ventral lateral geniculate nucleus of the hooded rat. Brain Research 170, 349352.CrossRefGoogle ScholarPubMed
Lugo-Garcia, N. & Kicliter, E. (1987). Superior colliculus efferents to five subcortical visual system structures in the ground squirrel. Brain Research 426, 131141.CrossRefGoogle ScholarPubMed
Lugo-Garcia, N. & Kicliter, E. (1988). Thalamic connections of the ground squirrel superior colliculus and their topographic relations. Journal für Hirnforschung 29, 187201.Google ScholarPubMed
Maturana, H.R. & Varela, F.J. (1982). Color-opponent responses in the avian lateral geniculate: a study in the quail (Coturnix coturnix japonica). Brain Research 247, 227241.CrossRefGoogle ScholarPubMed
Nakamura, H. & Kawamura, S. (1988). The ventral lateral geniculate nucleus in the cat: thalamic and commissural connections revealed by the use of WGA-HRP transport. Journal of Comparative Neurology 277, 509528.CrossRefGoogle ScholarPubMed
O'Leary, J.L. (1940). A structural analysis of the lateral geniculate nucleus of the cat. Journal of Comparative Neurology 73, 405430.CrossRefGoogle Scholar
Pateromichelakis, S. (1979). Response properties of units in the lateral geniculate nucleus of the domestic chick (Callus domesticus). Brain Research 167, 281296.CrossRefGoogle Scholar
Pickard, G.E. & Turek, F.W. (1983). The suprachiasmatic nuclei: two circadian clocks? Brain Research 268, 201210.CrossRefGoogle ScholarPubMed
Polyak, S. (1957). The Vertebrate Visual System. Illinois, Chicago: University of Chicago Press.Google Scholar
Putkonen, P.T.S., Magnin, M. & Jeannerod, M. (1973). Direct responses to head rotation in neurons from the ventral lateral geniculate body. Brain Research 61, 407411.CrossRefGoogle ScholarPubMed
Spear, P.D., Smith, D.C. & Williams, L.L. (1977). Visual receptive- field properties of single neurons in cat's ventral lateral geniculate nucleus. Journal of Neurophysiology 40, 390409.CrossRefGoogle ScholarPubMed
Sumitomo, I., Sugitani, M., Fukuda, Y. & lwama, K. (1979). Properties of cells responding to visual stimuli in the rat ventral lateral geniculate nucleus. Experimental Neurology 66, 721736.CrossRefGoogle ScholarPubMed
Swanson, L.W., Cowan, W.M. & Jones, E.G. (1974). An autoradiographic study of the efferent projections of the ventral lateral geniculate nucleus in the albino rat and the cat. Journal of Comparative Neurology 156, 143163.CrossRefGoogle Scholar
Varela, F.J., Letelier, J.C., Marin, G. & Maturana, H.R. (1983).The neurophysiology of avian color vision. Archivos de Biologia y Medicina Experimantal 16, 291303.Google Scholar
Weiler, R. & Ammermuller, J. (1986). Immunocytochemical localization of serotonin in intracellularly analyzed and dye-injected ganglion cells of the turtle retina. Neuroscience Letters 72, 147152.CrossRefGoogle ScholarPubMed
Williamson, D.E. & Eldred, W.D. (1989). Amacrine and ganglion cells with corticotropin-releasing factor-like immunoreactivity in the turtle retina. Journal of Comparative Neurology 280, 424435.CrossRefGoogle ScholarPubMed
Yu, B.C., Watt, C.B., Lam, D.M. & Fry, K.R. (1988). GABAergic ganglion cells in the rabbit retina. Brain Research 439, 376382.CrossRefGoogle ScholarPubMed