Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-24T11:40:56.707Z Has data issue: false hasContentIssue false

Changes in sensitivity of the dark-adapted eye during concurrent light adaptation of the other eye

Published online by Cambridge University Press:  02 June 2009

E. Auerbach
Affiliation:
Institut für Arbeitsphysiologie an der Universität Dortmund, Abteilung Sinnes- und Neurophysiologie Ardeystraße 67, D-4600 Dortmund I, Germany
A. Dörrenhaus
Affiliation:
Institut für Arbeitsphysiologie an der Universität Dortmund, Abteilung Sinnes- und Neurophysiologie Ardeystraße 67, D-4600 Dortmund I, Germany
C. R. Cavonius
Affiliation:
Institut für Arbeitsphysiologie an der Universität Dortmund, Abteilung Sinnes- und Neurophysiologie Ardeystraße 67, D-4600 Dortmund I, Germany

Abstract

Thresholds for detection of light by a dark-adapted test eye were measured while the other, non-test eye was either similarly dark adapted or while it was exposed to an intense red adapting field. An interocular effect that depends on the retinal location of the test was found: compared to the threshold during binocular dark adaptation, sensitivity decreased during contralateral light adaptation when the test was presented to the foveola and up to 4 deg above it; but sensitivity increased when the test was between 7 and 12 deg, showing a reversal at 5 deg.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auerbach, E., Dörrenhaus, A. & Cavonius, C.R. (1986). Changes in dark-adapted threshold sensitivity during simultaneous light-adaptation of the other eye: an interocular effect. Perception 15, A42.Google Scholar
Auerbach, E. & Peachey, N.S. (1984). Interocular transfer and dark adaptation to long-wave test lights. Vision Research 24, 10431048.Google Scholar
Baker, H.D. & Bargoot, F.G. (1977). Effect of stimulus presentation rate upon visual threshold. Vision Research 17, 379383.Google Scholar
Bauer, G.M., Frumkes, T.E. & Nygaard, R.W. (1983). The signal-to-noise characteristics of rod-cone interaction. Journal of Physiology (London) 337, 101119.Google Scholar
Brindley, G.S. (1970). Physiology of the Retina and Visual Pathway. London: Edward Arnold.Google Scholar
Brooke, R.N.L., Downer, D.J. De C. & Powell, T.P.S. (1965). Centrifugal fibres to the retina in the monkey and cat. Nature 207, 13651367.Google Scholar
Buck, S.L. & Pulos, E. (1987). Rod-cone interaction in monocular but not binocular pathways. Vision Research 27, 479482.CrossRefGoogle Scholar
Cavonius, C.R. & Hilz, R. (1970). Visual performance after preadaptation to colored lights. Journal of Experimental Psychology 83, 359365.CrossRefGoogle ScholarPubMed
Cowan, W.M. (1970). Centrifugal fibres to the avian retina. British Medical Bulletin 26, 112118.Google Scholar
Cowan, W.M. & Powell, T.P.S. (1963). Centrifugal fibres in the avian visual system. Proceedings of the Royal Society B (London) 158, 232252.Google Scholar
Crawford, B.H. (1940). Ocular interaction in its relation to measurements of brightness threshold. Proceedings of the Royal Society B (London) 128, 552559.Google Scholar
Denny, M., Frumkes, T.E., Barris, M.C. & Eysteinsson, T. (1991). Tonic interocular suppression and binocular summation in human vision. Journal of Physiology (London) 437, 449460.Google Scholar
Dowling, J.H. (1987). The Retina: An Approachable Part of the Brain. Cambridge: The Belknap Press of Harvard University Press.Google Scholar
Eason, R.G., Oakley, M. & Flowers, L. (1983). Central neural influences on the human retina during selective attention. Physiological Psychology 11, 1828.Google Scholar
EstÉVez, O., Cavonius, C.R. & Reeves, A.J. (1981). Modification of low-frequency flicker sensitivity by steady illumination of the other eye. Investigative Ophthalmology and Visual Science 20, 224.Google Scholar
Feinsod, M., Abramsky, O. & Auerbach, E. (1973). Electrophysiological examinations of the visual system in multiple selerosis. Journal of the Neurological Sciences 28, 161175.Google Scholar
Feinsod, M., Rowe, H. & Auerbach, E. (1971). Changes in the electroretinogram in patients with optic nerve lesions. Documenta Ophthalmologica 29, 169200.Google Scholar
Fine, B.S. & Yanoff, M. (1979). Ocular Histology, 2nd edition. New York: Harper & Row.Google Scholar
Hasselt, P. van (19721973). The centrifugal control of retinal function. A Review. Ophthalmological Research 4, 298320.Google Scholar
Hecht, S., Shlaer, S. & Pirenne, M.H. (1942). Energy, quanta, and vision. Journal of General Physiology 25, 819840.Google Scholar
Honrubia, F.M. & Elliott, J.H. (1968). Efferent innervation of the retina. I. Morphologic study of the human retina. Archives of Ophthalmology 80, 98103.Google Scholar
Kravkov, S.W. & Semenovskaja, E.N. (1933). Steigerung der Lichtempfindlichkeit des Auges durch vorangehende Lichtblitze. Graefes Archiv für Ophthalmologie 130, 513526.Google Scholar
Lansford, T.G. & Baker, H.D. (1969). Dark adaptation: an interocular light-adaptation effect. Science 164, 13071309.Google Scholar
Makous, W. (1990). Absolute sensitivity. In Night Vision: Basic, Clinical and Applied Aspects, ed. Hess, R.F., Sharpe, L.T. & Nordby, K., pp. 146176. Cambridge: Cambridge University Press.Google Scholar
Makous, W., Teller, D. & Boothe, R. (1976). Binocular interaction in the dark. Vision Research 16, 473476.Google Scholar
Miles, W.R. (1953). Effectiveness of red light on dark adaptation. Journal of the Optical Society of America 43, 435441.Google Scholar
Mitchell, R.T. & Liaudansky, L.H. (1955). Effect of differential adaptation of the eyes upon threshold sensitivity. Journal of the Optical Society of America 45, 831834.Google Scholar
Ogden, T.E. (1968). On the function of efferent retinal fibers. In Structure and Function of Inhibitory Neuronal Mechanisms, ed. von Euler, C., Skoglund, S. & Söderberg, U., pp. 89109. Oxford, London: Pergamon Press.Google Scholar
Paris, J. & Prestrude, A.M. (1975). On the mechanisms of the interocular light adaptation effect. Vision Research 15, 595603.Google Scholar
Reeves, A., Peachey, N.S. & Auerbach, E. (1986). Interocular sensitization to a rod-detected test. Vision Research 26, 11191127.CrossRefGoogle ScholarPubMed
RepÉRant, J. & Gallego, A. (1976). Fibres centrifuges dans la retine humaine. Archives d' Anatomie Microscopique 65, 103120.Google Scholar
Sakitt, B. (1972). Counting every quantum. Journal of Physiology (London) 223, 131150.Google Scholar
Wald, G. (1945). Human vision and the spectrum. Science 101, 653658.Google Scholar
Wolter, J.R. & Knoblich, R.R. (1965). Pathway of centrifugal fibers in the human optic nerve, chiasm and tract. British Journal of Ophthalmology 49, 246250.Google Scholar
Wolter, J.R. & Lund, O.E. (1968). Reaction of centrifugal nerves in the human retina. American Journal of Ophthalmology 66, 221232.Google Scholar