Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-05T04:52:21.290Z Has data issue: false hasContentIssue false

Central factors contributing to para-contrast modulation of contour and brightness perception

Published online by Cambridge University Press:  19 July 2007

BRUNO G. BREITMEYER
Affiliation:
Department of Psychology, University of Houston, Houston, Texas Center for Neuro-Engineering and Cognitive Science, University of Houston, Houston, Texas
RALPH ZIEGLER
Affiliation:
Department of Psychology, University of Houston, Houston, Texas Lehrstuhl für Nachrichtentechnik, Technische Universität München, München, Germany
GERT HAUSKE
Affiliation:
Lehrstuhl für Nachrichtentechnik, Technische Universität München, München, Germany

Abstract

Following up on a prior study of contour and brightness processing in visual masking (Breitmeyer et al., 2006), we investigated the effects of a binocular and dichoptic para-contrast masking on the visibility of the contour and brightness of a target presented to the other eye. Combined, the results support the contributions of several cortical processes to para-contrast: (1) two central sources of inhibition, one long-latency and prolonged and the other short-latency and brief; (2) binocular rivalry suppression; and (3) a facilitatory effect peaking at different SOAs for the contour and the brightness tasks, reflecting; (4) known properties of two separate cortical systems, one a fast contour-processing pathway and the other a slower brightness-processing pathway.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bachmann, T. (1988). Time course of the subjective contrast enhancement for a second stimulus in successively paired above-threshold transient forms: Perceptual retouch instead of forward masking. Vision Research 28, 12551261.Google Scholar
Bachmann, T. (1994). Psychophysiology of Visual Masking: The Fine Structure of Conscious Experience. Commack, NY: Nova Science Publishers.
Benardete, E.A. & Kaplan, E. (1997). The receptive field of the primate P retinal ganglion cell, I: Linear dynamics. Visual Neuroscience 14, 169185.Google Scholar
Berman, N.J., Douglas, R.J., Martin, K.A. & Whitteridge, D. (1991). Mechanisms of inhibition in cat visual cortex. Journal of Physiology 440, 697722.Google Scholar
Breitmeyer, B.G., Kafalıgönül, H., Öǧmen, H., Mardon, L., Todd, S. & Ziegler, R. (2006). Meta- and paracontrast reveal differences between contour- and brightness-processing mechanisms. Vision Research 46, 26452658.Google Scholar
Connors, B.W., Malenka, R.C. & Silva, L.R. (1988). Two inhibitory postsynaptic potentials, and GABAA and GABAB receptor-mediated responses in neocortex of rat and cat. Journal of Physiology 406, 443468.Google Scholar
DeYoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.Google Scholar
Grossberg, S. (1994). 3-D vision and figure-ground separation by visual cortex. Perception & Psychophysics 55, 48120.Google Scholar
Grossberg, S. (1997). Cortical dynamics of three-dimensional figure-ground perception of two-dimensional figures. Psychological Review 104, 618658.Google Scholar
Grossberg, S. & Howe, P.D.L. (2003). A laminar cortical model of stereopsis and three-dimensional surface perception. Vision Research 43, 801829.Google Scholar
Hofer, D., Walder, F. & Groner, M. (1989). Metakontrast: Ein berühmtes, aber schwer messbares Phänomen. Schweizerische Zeitschrift für Psychologie 48, 219232.Google Scholar
Kahneman, D. (1968). Method, findings, and theory in studies of visual masking. Psychological Bulletin 70, 40425.Google Scholar
Lamme, V.A.F., Rodriguez-Rodriguez, V. & Spekreijse, H. (1999). Separate processing dynamics for texture elements, boundaries and surfaces in primary visual cortex of the macaque monkey. Cerebral Cortex 9, 406413.Google Scholar
Maffei, L., Cervetto, L. & Fiorentini, A. (1970). Transfer characteristics of excitation and inhibition in cat retinal ganglion cells. Journal of Neurophysiology 33, 276284.Google Scholar
Meese, T.S. & Hess, R.F. (2005). Interocular suppression is gated by interocular feature matching. Vision Research 45, 915.Google Scholar
Nelson, S.B. (1991). Temporal interactions in the cat visual system. I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience 11, 344356.Google Scholar
Patel, S.S., Jiang, B.C. & Öǧmen, H. (2001). Vergence dynamics predict fixation disparity. Neural Computation 13, 14951525.Google Scholar
Poggio, G.B., Baker, F.H., Lamarre, Y. & Sanseverino, E.R. (1969). Afferent inhibition at input to visual cortex of the cat. Journal of Neurophysiology 32, 916929.Google Scholar
Schiller, P.H. & Smith, M.C. (1968). Monoptic and dichoptic metacontrast. Perception & Psychophysics 3, 237239.Google Scholar
Schor, C., Robertson, K.M. & Wesson, M. (1986). Disparity vergence dynamics and fixation disparity. American Journal of Optometry and Physiological Optics 63, 611618.Google Scholar
Singer, W. (1979). Central-core control of visual cortex functions. In The Neurosciences, Fourth Study Program, eds. Schmitt, F.O. & Worden, F.G., pp. 10931110. Cambridge, MA: MIT Press.
Singer, W. & Creutzfeldt, O.D. (1970). Reciprocal lateral inhibition of on- and off-center neurones in the lateral geniculate body of the cat. Experimental Brain Research 10, 311330.Google Scholar
Steriade, M. & McCarley, R.W. (1990). Brainstem Control of Wakefulness and sleep. New York: Plenum Press.
Stoper, A.E. & Mansfield, J.G. (1978). Metacontrast and paracontrast suppression of a contourless area. Vision Research 18, 16691674.Google Scholar
Ventura, J. (1980). Foveal metacontrast: I. Criterion content and practice effects. Journal of Experimental Psychology: Human Perception and Performance 6, 473485.Google Scholar
Xiao, Y., Wang, Y. & Felleman, D.J. (2003). A spatially organized representation of colour in macaque cortical area V2. Nature 421, 535539.Google Scholar
Xiao, Y., Zych, A. & Felleman, D.J. (1999). Segregation and convergence of functionally defined V2 thin strip and interstripe compartment projections to area V4 of macaques. Cerebral Cortex 9, 792804.Google Scholar