Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-24T06:46:40.772Z Has data issue: false hasContentIssue false

Amblyopia: New molecular/pharmacological and environmental approaches

Published online by Cambridge University Press:  16 April 2018

MICHAEL P. STRYKER*
Affiliation:
UCSF Sandler Neurosciences Center, University of California, San Francisco, San Francisco, California
SIEGRID LÖWEL*
Affiliation:
Department of Systems Neuroscience, University of Göttingen, Göttingen, Germany
*
*Address correspondence to: Michael Stryker, Department of Physiology, 675 Nelson Rising Lane, Room 535, University of California, San Francisco, CA 94143-0444. E-mail: [email protected] and Siegrid Löwel, Department of Systems Neuroscience, University of Goettingen, Von-Siebold-Str. 6, D-37075 Göttingen, Germany. E-mail: [email protected]
*Address correspondence to: Michael Stryker, Department of Physiology, 675 Nelson Rising Lane, Room 535, University of California, San Francisco, CA 94143-0444. E-mail: [email protected] and Siegrid Löwel, Department of Systems Neuroscience, University of Goettingen, Von-Siebold-Str. 6, D-37075 Göttingen, Germany. E-mail: [email protected]

Abstract

Emerging technologies are now giving us unprecedented access to manipulate brain circuits, shedding new light on treatments for amblyopia. This research is identifying key circuit elements that control brain plasticity and highlight potential therapeutic targets to promote rewiring in the visual system during and beyond early life. Here, we explore how such recent advancements may guide future pharmacological, genetic, and behavioral approaches to treat amblyopia. We will discuss how animal research, which allows us to probe and tap into the underlying circuit and synaptic mechanisms, should best be used to guide therapeutic strategies. Uncovering cellular and molecular pathways that can be safely targeted to promote recovery may pave the way for effective new amblyopia treatments across the lifespan.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Antonini, A., Fagiolini, M. & Stryker, M.P. (1999). Anatomical correlates of functional plasticity in mouse visual cortex. Journal of Neuroscience 19, 43884406.CrossRefGoogle ScholarPubMed
Antonini, A. & Stryker, M.P. (1993). Rapid remodeling of axonal arbors in the visual cortex. Science 260, 18191821.CrossRefGoogle ScholarPubMed
Bavelier, D., Levi, D.M., Li, R.W., Dan, Y. & Hensch, T.K. (2010). Removing brakes on adult brain plasticity: From molecular to behavioral interventions. Journal of Neuroscience 30, 1496414971.CrossRefGoogle ScholarPubMed
Birch, E.E. (2012). Amblyopia and binocular vision. Progress in Retinal and Eye Research 33, 6784.Google Scholar
Birch, E.E., Li, S.L., Jost, R.M., Morale, S.E., De La Cruz, A., Stager, D., Dao, L. & Stager, D.R. (2015). Binocular iPad treatment for amblyopia in preschool children. Journal of AAPOS 19, 611.CrossRefGoogle ScholarPubMed
Brock, F.W. (1963). New methods for testing binocular control. Journal of the American Optometric Association 34, 443450.Google Scholar
Campbell, F.W., Hess, R.F., Watson, P.G. & Banks, R. (1978). Preliminary results of a physiologically based treatment of amblyopia. British Journal of Ophthalmology 62, 748755.CrossRefGoogle ScholarPubMed
Chen, N., Sugihara, H., Sharma, J., Perea, G., Petravicz, J., Le, C. & Sur, M. (2012). Nucleus basalis enabled stimulus specific plasticity in the visual cortex is mediated by astrocytes. Proceedings of the National Academy of Sciences of the United States of America 109, E2832E2841.Google ScholarPubMed
Chung, S.T., Kumar, G., Li, R.W. & Levi, D.M. (2015). Characteristics of fixational eye movements in amblyopia: Limitations on fixation stability and acuity? Vision Research 114, 8799.CrossRefGoogle ScholarPubMed
Cohen, A.H. (1981). Monocular fixation in a binocular field. Journal of the American Optometric Association 52, 801806.Google Scholar
Cooper, L.N. & Bear, M.F. (2012). The BCM theory of synapse modification at 30: Interaction of theory with experiment. Nature Reviews Neuroscience 13, 798810.CrossRefGoogle ScholarPubMed
Cynader, M. (1983). Prolonged sensitivity to monocular deprivation in dark-reared cats: Effects of age and visual exposure. Brain Research 284, 155164.CrossRefGoogle ScholarPubMed
Daw, N.W. (2013). Visual Development (2nd ed.). New York: Springer.Google Scholar
Ding, Z., Li, J., Spiegel, D.P., Chen, Z., Chan, L., Luo, G., Yuan, J., Deng, D., Yu, M. & Thompson, B. (2016). The effect of transcranial direct current stimulation on contrast sensitivity and visual evoked potential amplitude in adults with amblyopia. Scientific Reports 6, 19280.CrossRefGoogle ScholarPubMed
Donato, F., Rompani, S.B. & Caroni, P. (2013). Parvalbumin-expressing basket-cell network plasticity induced by experience regulates adult learning. Nature 504, 272276.CrossRefGoogle ScholarPubMed
Duffy, K.R., Bukhamseen, D.H., Smithen, M.J. & Mitchell, D.E. (2015). Binocular eyelid closure promotes anatomical but not behavioural recovery from monocular deprivation. Vision Research 114, 151160.CrossRefGoogle Scholar
Duffy, K.R., Lingley, A.J., Holman, K.D. & Mitchell, D.E. (2016). Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. Journal of Comparative Neurology 524, 26432653.CrossRefGoogle ScholarPubMed
Duffy, K.R. & Mitchell, D.E. (2013). Darkness alters maturation of visual cortex and promotes fast recovery from monocular deprivation. Current Biology 23, 382386.CrossRefGoogle ScholarPubMed
Eaton, N.C., Sheehan, H.M. & Quinlan, E.M. (2016). Optimization of visual training for full recovery from severe amblyopia. Learning & Memory 23, 99103.CrossRefGoogle ScholarPubMed
Engle, E.C. (2007). Genetic basis of congenital strabismus. Archives of Ophthalmology 125, 189195.Google Scholar
Fagiolini, M., Jensen, C.L. & Champagne, F.A. (2009). Epigenetic influences on brain development and plasticity. Current Opinion in Neurobiology 19, 207212.CrossRefGoogle ScholarPubMed
Fong, M-F., Mitchell, D.E., Duffy, K.R. & Bear, M.F. (2016). Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proceedings of the National Academy of Sciences of the United States of America 113, 1413914144.CrossRefGoogle ScholarPubMed
Fox, K., Daw, N., Sato, H. & Czepita, D. (1991). Dark-rearing delays the loss of NMDA-receptor function in kitten visual cortex. Nature 350, 342344.CrossRefGoogle ScholarPubMed
Frenkel, M.Y. & Bear, M.F. (2004). How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917923.CrossRefGoogle ScholarPubMed
Fu, Y., Kaneko, M., Tang, Y., Alvarez-Buylla, A. & Stryker, M.P. (2015). A cortical disinhibitory circuit for enhancing adult plasticity. eLife e05558.CrossRefGoogle ScholarPubMed
Fu, Y., Tucciarone, J.M., Espinosa, J.S., Sheng, N., Daracy, D.P., Nicoll, R.A., Huang, Z.J. & Stryker, M.P. (2014). A cortical circuit for gain control by behavioral state. Cell 156, 11391152.CrossRefGoogle ScholarPubMed
Funahashi, R., Maruyama, T., Yoshimura, Y. & Komatsu, Y. (2013). Silent synapses persist into adulthood in layer 2/3 pyramidal neurons of visual cortex in dark-reared mice. Journal of Neurophysiology 109, 20642076.Google Scholar
Garzia, R.P. (1987). Efficacy of vision therapy in amblyopia: A literature review. American Journal of Optometry and Physiological Optics 64, 393404.CrossRefGoogle ScholarPubMed
Gervain, J., Vines, B.W., Chen, L.M., Seo, R.J., Hensch, T.K., Werker, J.F. & Young, A.H. (2013). Valproate reopens critical-period learning of absolute pitch. Frontiers in Systems Neuroscience 7, 102.CrossRefGoogle ScholarPubMed
González, E.G., Wong, A.M., Niechwiej-Szwedo, E., Tarita-Nistor, L. & Steinbach, M.J. (2012). Eye position stability in amblyopia and in normal binocular vision. Investigative Ophthalmology & Visual Science 53, 53865394.CrossRefGoogle ScholarPubMed
Grant, S., Melmoth, D.R., Morgan, M.J. & Finlay, A.L. (2007). Prehension deficits in amblyopia. Investigative Ophthalmology & Visual Science 48, 11391148.CrossRefGoogle ScholarPubMed
Grant, S. & Moseley, M.J. (2011). Amblyopia and real-world visuomotor tasks. Strabismus 19, 119128.Google Scholar
Greifzu, F., Kalogeraki, E. & Löwel, S. (2016). Environmental enrichment preserved lifelong ocular dominance plasticity, but did not improve visual abilities. Neurobiology of Aging 41, 130137.CrossRefGoogle Scholar
Greifzu, F., Pielecka-Fortuna, J., Kalogeraki, E., Krempler, K., Favaro, P.D., Schlüter, O.M. & Löwel, S. (2014). Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments of plasticity. Proceedings of the National Academy of Sciences of the United States of America 111, 11501155.Google Scholar
Gu, Y., Tran, T., Murase, S., Borrell, A., Kirkwood, A. & Quinlan, E.M. (2016). Neuregulin-dependent regulation of fast-spiking interneuron excitability controls the timing of the critical period. Journal of Neuroscience 36, 1028510295.Google Scholar
Hangya, B., Ranade, S.P., Lorenc, M. & Kepecs, A. (2015). Central cholinergic neurons are rapidly recruited by reinforcement feedback. Cell 162, 11551168.CrossRefGoogle ScholarPubMed
Harauzov, A., Spolidoro, M., Dicristo, G., Pasquale, R.D., Cancedda, L., Pizzorusso, T., Viegi, A., Berardi, N. & Maffei, L. (2010). Reducing intracortical inhibition in the adult visual cortex promotes ocular dominance plasticity. Journal of Neuroscience 30, 361371.Google Scholar
He, H.Y., Hodos, W. & Quinlan, E.M. (2006). Visual deprivation reactivates rapid ocular dominance plasticity in adult visual cortex. Journal of Neuroscience 26, 29512955.CrossRefGoogle ScholarPubMed
He, H.Y., Ray, B., Dennis, K. & Quinlan, E.M. (2007). Experience-dependent recovery of vision following chronic deprivation amblyopia. Nature Neuroscience 10, 11341136.Google Scholar
Hess, R.F., Mansouri, B. & Thompson, B. (2011). Restoration of binocular vision in amblyopia. Strabismus 19, 110118.Google Scholar
Hess, R.F. & Thompson, B. (2015). Amblyopia and the binocular approach to its therapy. Vision Research 114, 416.Google Scholar
Holmes, J.M. & Clarke, M.P. (2006). Amblyopia. Lancet 367, 13431351.CrossRefGoogle ScholarPubMed
Holmes, J.M., Manh, V.M., Lazar, E.L., Beck, R.W., Birch, E.E., Kraker, R.T., Crouch, E.R., Erzurum, S.A., Khuddus, N., Summers, A.I., Wallace, D.K. & Pediatric Eye Disease Investigator Group (2016). Effect of a binocular iPad game vs. part-time patching in children aged 5 to 12 years with amblyopia: A randomized clinical trial. JAMA Ophthalmology 134, 13911400.CrossRefGoogle ScholarPubMed
Huang, S., Gu, Y., Quinlan, E.M. & Kirkwood, A. (2010). A refractory period for rejuvenating GABAergic synaptic transmission and ocular dominance plasticity with dark exposure. Journal of Neuroscience 30, 1663616642.CrossRefGoogle ScholarPubMed
Huang, X., Stodieck, S.K., Goetze, B., Cui, L., Wong, M.H., Wenzel, C., Hosand, L., Dong, Y., Löwel, S. & Schlüter, O.M. (2015). Progressive maturation of silent synapses governs the duration of a critical period. Proceedings of the National Academy of Sciences of the United States of America 112, E3131E3140.Google ScholarPubMed
Isstas, M., Teichert, M., Bolz, J. & Lehmann, K. (2017). Embryonic interneurons from the medial, but not the caudal ganglionic eminence trigger ocular dominance plasticity in adult mice. Brain Structure and Function 222, 539547.Google Scholar
Kalogeraki, E., Greifzu, F., Haack, F. & Löwel, S. (2014). Voluntary physical exercise promotes ocular dominance plasticity in adult mouse primary visual cortex. Journal of Neuroscience 34, 1547615481.Google Scholar
Kaneko, M. & Stryker, M. (2014). Sensory experience during locomotion promotes recovery of function in adult visual cortex. eLife 3, e02798.Google Scholar
Katz, L.M., Levi, D.M. & Bedell, H.E. (1984). Central and peripheral contrast sensitivity in amblyopia with varying field size. Documenta Ophthalmologica 58, 351373.Google Scholar
Kelly, K.R., Jost, R.M., Dao, L., Beauchamp, C.L., Leffler, J.N. & Birch, E.E. (2016). Binocular iPad game vs. patching for treatment of amblyopia in children: A randomized clinical trial. JAMA Ophthalmology 134, 14021408.Google Scholar
Kiorpes, L. (2006). Visual processing in amblyopia: Animal studies. Strabismus 14, 310.Google Scholar
Kiorpes, L., Kiper, D.C., O’Keefe, L.P., Cavanaugh, J.R. & Movshon, J.A. (1998). Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia. Journal of Neuroscience 18, 64116424.CrossRefGoogle ScholarPubMed
Kiorpes, L. & Mangal, P. (2015). “Global” visual training and extent of transfer in amblyopic macaque monkeys. Journal of Vision 15, 14.CrossRefGoogle ScholarPubMed
Kiorpes, L. & McKee, S.P. (1999). Neural mechanisms underlying amblyopia. Current Opinion in Neurobiology 9, 480486.Google Scholar
Letzkus, J.J., Wolff, S.B., Meyer, E.M., Tovote, P., Courtin, J., Herry, C. & Lüthi, A. (2011). A disinhibitory microcircuit for associative fear learning in the auditory cortex. Nature 480, 331.Google Scholar
Levi, D.M. & Klein, S. (1982). Hyperacuity and amblyopia. Nature 298, 268270.Google Scholar
Levi, D.M., Klein, S.A. & Aitsebaomo, P. (1984). Detection and discrimination of the direction of motion in central and peripheral vision of normal and amblyopic observers. Vision Research 24, 789800.CrossRefGoogle ScholarPubMed
Levi, D.M., Knill, D.C. & Bavelier, D. (2015). Stereopsis and amblyopia: A mini-review. Vision Research 114, 1730.Google Scholar
Levi, D.M. & Li, R.W. (2009). Perceptual learning as a potential treatment for amblyopia: A mini-review. Vision Research 49, 25352549.Google Scholar
Ludlam, W.M. (1992). The use of the opti-mum system I computerized VT in treating strabismus and amblyopia. In Computers and Vision Therapy Programs, ed. Press, L.J., pp. 3740. Santa Ana: Optometric Extension Program.Google Scholar
Lunghi, C. & Sale, A. (2015). A cycling lane for brain rewiring. Current Biology 25, R1122R1123.CrossRefGoogle ScholarPubMed
Mataga, N., Mizaguchi, Y. & Hensch, T.K. (2004). Experience-dependent pruning of dendritic spines in visual cortex by tissue plasminogen activator. Neuron 44, 10311041.Google Scholar
Maya Vetencourt, J.F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O’Leary, O.F., Castrén, E. & Maffei, L. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 18, 385388.Google Scholar
McKee, S.P., Levi, D.M., Schor, C.M. & Movshon, J.A. (2016). Saccadic latency in amblyopia. Journal of Vision 16, 3.Google Scholar
Merabet, L.B., Hamilton, R., Schlaug, G., Swisher, J.D., Kiriakopoulos, E.T., Pitskel, N.B., Kauffman, T. & Pascual-Leone, A. (2008). Rapid and reversible recruitment of early visual cortex for touch. PLos One 3, e3046.Google Scholar
Mitchell, D.E., MacNeill, K., Crowder, N.A., Holman, K. & Duffy, K.R. (2016). Recovery of visual functions in amblyopic animals following brief exposure to total darkness. Journal of Physiology 594, 149167.CrossRefGoogle ScholarPubMed
Montey, K.L. & Quinlan, E.M. (2011). Recovery from chronic monocular deprivation following reactivation of thalamocortical plasticity by dark exposure. Nature Communications 2, 317.Google Scholar
Morishita, H., Miwa, J.M., Heintz, N. & Hensch, T.K. (2010). Lynx1, a cholinergic brake, limits plasticity in adult visual cortex. Science 330, 12381240.Google Scholar
Movshon, J.A., Eggers, H.M., Gizzi, M.S., Hendrickson, A.E., Kiorpes, L. & Boothe, R.G. (1987). Effects of early unilateral blur on the macaque’s visual system. III. Physiological observations. Journal of Neuroscience 7, 13401351.CrossRefGoogle ScholarPubMed
Mower, G.D., Caplan, C.J., Christen, W.G. & Duffy, F.H. (1985). Dark rearing prolongs physiological but not anatomical plasticity of the cat visual cortex. Journal of Comparative Neurology 235, 448466.CrossRefGoogle Scholar
Naarendorp, F., Esdaille, T.M., Banden, S.M., Andrews-Labenski, J., Gross, O.P. & Pugh, E.N. Jr. (2010). Dark light, rod saturation, and the absolute and incremental sensitivity of mouse cone vision. Journal of Neuroscience 30, 1249512507.Google Scholar
Niechwiej-Szwedo, E., Chandrakumar, M., Goltz, H.C. & Wong, A.M. (2012). Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior, I: Saccadic eye movements. Investigative Ophthalmology & Visual Science 53, 74587468.CrossRefGoogle ScholarPubMed
Niechwiej-Szwedo, E., Chin, J., Wolfe, P.J., Popovich, C. & Staines, W.R. (2016). Abnormal visual experience during development alters the early stages of visual-tactile integration. Behavioural Brain Research 304, 111119.CrossRefGoogle ScholarPubMed
Niechwiej-Szwedo, E., Goltz, H.C., Chandrakumar, M., Hirji, Z.A. & Wong, A.M. (2010). Effects of anisometropic amblyopia on visuomotor behavior, I: Saccadic eye movements. Investigative Ophthalmology & Visual Science 51, 63486354.Google Scholar
Niechwiej-Szwedo, E., Goltz, H.C., Chandrakumar, M., Hirji, Z. & Wong, A.M. (2011). Effects of anisometropic amblyopia on visuomotor behavior, III: Temporal eye-hand coordination during reaching. Investigative Ophthalmology & Visual Science 52, 58535861.Google Scholar
Niechwiej-Szwedo, E., Goltz, H.C., Chandrakumar, M. & Wong, A.M. (2014). Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior: III. Temporal eye-hand coordination during reaching. Investigative Ophthalmology & Visual Science 55, 78317838.Google Scholar
Niell, C.M. & Stryker, M.P. (2010). Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65, 472479.Google Scholar
Normann, C., Schitz, D., Fürmaier, A., Döing, C. & Bach, M. (2007). Long-term plasticity of visual evoked potentials in humans is altered in major depression. Biological Psychiatry 62, 373380.Google Scholar
Perdziak, M., Witkowska, D.K., Gryncewicz, W. & Ober, J.K. (2016). Not only amblyopic but also dominant eye in subjects with strabismus show increased saccadic latency. Journal of Vision 16, 12.Google Scholar
Pfeffer, C., Xue, M., He, M., Huang, Z. & Scanziani, M. (2013). Inhibition of inhibition in visual cortex: The logic of connections between molecularly distinct interneurons. Nature Neuroscience 16, 10681076.Google Scholar
Philpot, B.D., Cho, K.K. & Bear, M.F. (2007). Obligatory role of NR2A for metaplasticity in visual cortex. Neuron 53, 495502.CrossRefGoogle ScholarPubMed
Pi, H.J., Hangya, B., Kvitsiani, D., Sanders, J.I., Huang, Z.J. & Kepecs, A. (2013). Cortical interneurons that specialize in disinhibitory control. Nature 503, 521524.Google Scholar
Pizzorusso, T., Medini, P., Berardi, N., Chierzi, S., Fawcett, J.W. & Maffei, L. (2002). Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298, 12481251.CrossRefGoogle ScholarPubMed
Press, L.J. (1981). Electronic games and strabismic therapy. Journal of Optometry and Visual Development 12, 3539.Google Scholar
Prusky, G.T. & Douglas, R.M. (2004). Characterization of mouse cortical spatial vision. Vision Research 44, 34113418.Google Scholar
Prusky, G.T., West, P.W. & Douglas, R.M. (2000). Behavioral assessment of visual acuity in mice and rats. Vision Research 40, 22012209.CrossRefGoogle ScholarPubMed
Putignano, E., Lonetti, G., Cancedda, L., Ratto, G., Costa, M., Maffei, L. & Pizzorusso, T. (2007). Developmental downregulation of histone posttranslational modifications regulates visual cortical plasticity. Neuron 53, 747759.Google Scholar
Raashid, R.A., Liu, I.Z., Blakeman, A., Goltz, H.C. & Wong, A.M. (2016). The initiation of smooth pursuit is delayed in anisometropic amblyopia. Investigative Ophthalmology & Visual Science 57, 17571764.Google Scholar
Sale, A., Maya Vetencourt, J.F., Medini, P., Cenni, M.C., Baroncelli, L., De Pasquale, R. & Maffei, L. (2007). Environmental enrichment in adulthood promotes amblyopia recovery through a reduction of intracortical inhibition. Nature Neuroscience 10, 679681.CrossRefGoogle ScholarPubMed
Scholl, B., Burge, J. & Priebe, N.J. (2013). Binocular integration and disparity selectivity in mouse primary visual cortex. Journal of Neurophysiology 109, 30133024.Google Scholar
Schröder, J.H., Fries, P., Roelfsema, P.R., Singer, W. & Engel, A.K. (2002). Ocular dominance in extrastriate cortex of strabismic amblyopic cats. Vision Research 42, 2939.Google Scholar
Silingardi, D., Scali, M., Belluomini, G. & Pizzorusso, T. (2010). Epigenetic treatments of adult rats promote recovery from visual acuity deficits induced by long-term monocular deprivation. European Journal of Neuroscience 31, 21852192.Google Scholar
Southwell, D.G., Froemke, R.C., Alvarez-Buylla, A., Stryker, M.P. & Gandhi, S.P. (2010). Cortical plasticity induced by inhibitory neuron transplantation. Science 327, 1145.Google Scholar
Stagg, C.J., Best, J.G., Stephenson, M.C., O’Shea, J., Wylezinska, M., Kincses, Z.T., Morris, P.G., Matthews, P.M. & Johansen-Berg, H. (2009). Polarity-sensitive modulation of cortical neurotransmitters by transcranial stimulation. Journal of Neuroscience 29, 52025206.Google Scholar
Stodieck, S.K., Greifzu, F., Goetze, B., Schmidt, K.F. & Löwel, S. (2014). Brief dark exposure restored ocular dominance plasticity in aging mice and after a cortical stroke. Experimental Gerontology 60, 111.Google Scholar
Suttle, C.M., Melmoth, D.R., Finlay, A.L., Sloper, J.J. & Grant, S. (2011). Eye-hand coordination skills in children with and without amblyopia. Investigative Ophthalmology & Visual Science 52, 18511864.Google Scholar
Takesian, A.E. & Hensch, T.K. (2013). Balancing plasticity/stability across brain development. Progress in Brain Research 207, 334.Google Scholar
Tang, Y., Stryker, M.P., Alvarez-Buylla, A. & Espinosa, J.S. (2014). Cortical plasticity induced by transplantation of embryonic somatostatin or parvalbumin interneurons. Proceedings of the National Academy of Sciences of the United States of America 111, 1833918344.Google Scholar
Thompson, B., Lagas, A.K., Stinear, C.M., Byblow, W.D., Russel, B.R. & Kydd, R.R. (2014). The use of selective serotonin reuptake inhibitors to treat amblyopia in adulthood. Investigative Ophthalmology & Visual Science 55, 801.Google Scholar
Uusitalo, H. (2013). Hermo pharma reports topline data with HER-801 from clinical study in adult amblyopia. Available at: http://evaluategroup.com/Universal/View.aspx?type=Story&id=453937 (accessed September 21, 2016).Google Scholar
Van Hedger, S.C., Heald, L.M., Koch, R. & Nusbaum, H.C. (2015). Auditory working memory predicts individual differences in absolute pitch learning. Cognition 140, 95110.CrossRefGoogle ScholarPubMed
Vedamurthy, I., Nahum, M., Huang, S.J., Zheng, F., Bayliss, J., Bavelier, D. & Levi, D.M. (2015). A dichoptic custom-made action video game as a treatment for adult amblyopia. Vision Research 114, 173187.Google Scholar
Webber, A.L., Wood, J.M. & Thompson, B. (2016). Fine motor skills of children with amblyopia improve following binocular treatment. Investigative Ophthalmology & Visual Science 57, 47134720.Google Scholar
Wick, B., Wingard, M., Cotter, S. & Scheiman, M. (1992). Anisometropic amblyopia: Is the patient ever too old to treat? Optometry and Vision Science 69, 866878.Google Scholar
Yashiro, K., Corlew, R. & Philpot, B.D. (2005). Visual deprivation modifies both presynaptic glutamate release and the composition of perisynaptic/extrasynaptic NMDA receptors in adult visual cortex. Journal of Neuroscience 25, 1168411692.Google Scholar