Article contents
Amacrine cell contributions to red-green color opponency in central primate retina: A model study
Published online by Cambridge University Press: 28 September 2007
Abstract
To investigate the contributions of amacrine cells to red-green opponency, a linear computational model of the central macaque retina was developed based on a published cone mosaic. In the model, amacrine cells of ON and OFF types received input from all neighboring midget bipolar cells of the same polarity, but OFF amacrine cells had a bias toward bipolar cells whose center responses were mediated by middle wavelength sensitive cones. This bias might arise due to activity dependent plasticity because there are midget bipolar cells driven by short wavelength sensitive cones in the OFF pathway. The model midget ganglion cells received inputs from neighboring amacrine cells of both types. As in physiological experiments, the model ganglion cells showed spatially opponent responses to achromatic stimuli, but they responded to cone isolating stimuli as though center and surround were each driven by a single cone type. Without amacrine cell input, long and middle wavelength sensitive cones contributed to both the centers and surrounds of model ganglion cell receptive fields. According to the model, the summed amacrine cell input was red-green opponent even though inputs to individual amacrine cells were unselective. A key prediction is that GABA and glycine depolarize two of the four types of central midget ganglion cells; this may reflect lower levels of the potassium chloride co-transporter in their dendrites.
- Type
- Research Article
- Information
- Copyright
- © 2007 Cambridge University Press
References
REFERENCES
- 6
- Cited by