Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-12T08:28:43.694Z Has data issue: false hasContentIssue false

Alpha ganglion cells in mammalian retinae: Common properties, species differences, and some comments on other ganglion cells

Published online by Cambridge University Press:  02 June 2009

Leo Peichl
Affiliation:
Max-Planck-Institut für Hirnforschung, Deutschordenstrasse, Frankfurt/M. 71, Germany

Abstract

A specific morphological class of ganglion cell, the alpha cell, was first defined in cat retina. Alpha cells have since been found in a wide range of mammalian retinae, including several orders of placental and marsupial mammals. Characteristically, they have the largest somata and a large dendritic field with a typical branching pattern. They occur as inner and outer stratifying subpopulations, presumably corresponding to ON-center and OFF-center receptive fields. In all species, alpha cells account for less than 10% of the ganglion cells, their somata are regularly spaced, and their dendritic fields evenly and economically cover the retina in a mosaic-like fashion. The morphology of alpha cells and many features, both of single cells and of the population, are conserved across species with different habitats and life-styles. This suggests that alpha cells are a consistent obligatory ganglion cell type in every mammalian retina and probably subserve some fundamental task(s) in visual performance.

Some general rules about the construction principles of ganglion cell classes are inferred from the alpha cells, stressing the importance of population parameters for the definition of a class. The principle, that a functionally and morphologically homogeneous population should have a regular arrangement and a complete and even coverage of the retina to perform its part in image processing at each retinal location, is especially evident across species and across ganglion cell types.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amthor, F.R., Oyster, C.W. & Takahashi, E.S. (1983). Quantitative morphology of rabbit retinal ganglion cells. Proceedings of the Royal Society B (London) 217, 341355.Google Scholar
Amthor, F.R., Takahashi, E.S. & Oyster, C.W. (1989a). Morphologies of rabbit retinal ganglion cells with concentric receptive fields. Journal of Comparative Neurology 280, 7296.Google Scholar
Amthor, F.R., Takahashi, E.S. & Oyster, C.W. (1989b). Morphologies of rabbit retinal ganglion cells with complex receptive fields. Journal of Comparative Neurology 280, 97121.Google Scholar
Bloomfield, S.A. & Miller, R.F. (1986). A functional organization of ON and OFF pathways in the rabbit retina. Journal of Neuroscience 6, 113.Google Scholar
Bowling, D.B. & Michael, C.R. (1984). Terminal patterns of single, physiologically characterized optic tract fibers in the cat's lateral geniculate nucleus. Journal of Neuroscience 4, 198216.Google Scholar
Boycott, B.B. & Dowling, J.E. (1969). Organization of the primate retina: light microscopy. Philosophical Transactions of the Royal Society B (London) 255, 109184.Google Scholar
Boycott, B.B. & Wässle, H. (1974). The morphological types of ganglion cells of the domestic cat's retina. Journal of Physiology (London) 240, 397419.Google Scholar
Buhl, E.H. & Peichl, L. (1986). Morphology of rabbit retinal ganglion cells projecting to the medial terminal nucleus of the accessory optic system. Journal of Comparative Neurology 253, 163174.CrossRefGoogle Scholar
Cajal, S.R.Y (1893). La rétine des vertébrés. La Cellule 9, 119257.Google Scholar
Caldwell, J.H. & Daw, N.W. (1978). New properties of rabbit retinal ganglion cells. Journal of Physiology (London) 276, 257276.Google Scholar
Cleland, B.G. & Levick, W.R. (1974). Brisk and sluggish concentrically organized ganglion cells in the cat's retina. Journal of Physiology (London) 240, 421456.Google Scholar
Cleland, B.G., Harding, T.H. & Tulunay-Keesey, U. (1983). Response to the length of moving visual stimuli of the brisk classes of ganglion cells in the cat retina. Journal of Physiology (London) 345, 2745.Google Scholar
Cleland, B.G., Levick, W.R. & Wässle, H. (1975). Physiological identification of a morphological class of cat retinal ganglion cells. Journal of Physiology (London) 248, 151171.Google Scholar
Crook, J.M., Lange-Malecki, B., Lee, B.B. & Valberg, A. (1988). Visual resolution of macaque retinal ganglion cells. Journal of Physiology (London) 396, 205224.Google Scholar
Dacey, D.M. (1989). Monoamine-accumulating ganglion cell type of the cat's retina. Journal of Comparative Neurology 288, 5980.CrossRefGoogle ScholarPubMed
Dann, J.F. & Buhl, E.H. (1987). Retinal ganglion cells projecting to the accessory optic system in the rat. Journal of Comparative Neurology 262, 141158.Google Scholar
Dann, J.F. & Buhl, E.H. (1990). Morphology of retinal ganglion cells in the flying fox (Pteropus scapulatus): a Lucifer-yellow investigation. Journal of Comparative Neurology 301, 401416.CrossRefGoogle ScholarPubMed
Dann, J.F., Buhl, E.H. & Peichl, L. (1988). Postnatal dendritic maturation of alpha and beta ganglion cells in cat retina. Journal of Neuroscience 8, 14851499.CrossRefGoogle ScholarPubMed
Dreher, B., Sefton, A.J., Ni, S.Y.K. & Nisbett, G. (1985). The morphology, number, distribution, and central projections of class I retinal ganglion cells in albino and hooded rats. Brain, Behavior, and Evolution 26, 1048.CrossRefGoogle Scholar
Dunlop, S.A. (1990). Early development of retinal ganglion cell dendrites in the marsupial Setonix brachyurus, quokka. Journal of Comparative Neurology 293, 425447.CrossRefGoogle ScholarPubMed
Enroth-Cugell, C. & Freeman, A.W. (1987). The receptive-field spatial structure of cat retinal Y cells. Journal of Physiology (London) 384, 4979.Google Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells of the cat. Journal of Physiology (London) 187, 517552.Google Scholar
Famiglietti, E.V. & Kolb, H. (1975). A bistratified amacrine cell and synaptic circuitry in the inner plexiform layer of the retina. Brain Research 84, 293300.Google Scholar
Famiglietti, E.V., Kaneko, A. & Tachibana, M. (1977). Neuronal architecture of ON and OFF pathways to ganglion cells in carp retina. Science 198, 12671269.CrossRefGoogle Scholar
Frank, B.D. & Hollyfield, J.G. (1987). Retinal ganglion cell morphology in the frog (Rana pipiens). Journal of Comparative Neurology 266, 413434.Google Scholar
Freed, M.A. & Sterling, P. (1988). The ON-alpha ganglion cell of the cat retina and its presynaptic cell types. Journal of Neuroscience 8, 23032320.CrossRefGoogle ScholarPubMed
Fukuda, Y., Hsiao, C.-F., Watanabe, M. & Ito, H. (1984). Morphological correlates of physiologically identified Y, X, and W cells in cat retina. Journal of Neurophysiology 52, 9991013.Google Scholar
Fukuda, Y., Morigiwa, K. & Tauchi, M. (1988). Morphology of alpha ganglion cells in the albino rat retina. Biomedical Research (Suppl. 2) 9, 139142.Google Scholar
Hale, P.T., Sefton, A.J. & Dreher, B. (1979). A correlation of receptive-field properties with conduction velocity of cells in the rat's retino-geniculo-cortical pathway. Experimental Brain Research 35, 425442.Google Scholar
Hebel, R. (1982). Structure and distribution of retinal ganglion cells as revealed with the Bodian technique. In Structure of the Eye, ed. Hollyfield, J.G., pp. 183190. New York: Elsevier, North Holland.Google Scholar
Hitchcock, P.F. (1987). Constant dendritic coverage by ganglion cells with growth of the goldfish's retina. Vision Research 27, 1722.Google Scholar
Hitchcock, P.F., & Easter, S.S. (1986). Retinal ganglion cells in gold-fish: a qualitative classification into four morphological types, and a quantitative study of the development of one of them. Journal of Neuroscience 6, 10371050.Google Scholar
Hochstein, S. & Shapley, R.M. (1976). Quantitative analysis of retinal ganglion cell classifications. Journal of Physiology (London) 262, 237264.Google Scholar
Hokoç, J.N. & Moraes, A.M. (1991). Beta-like ganglion cells in the opossum retina: a Golgi study. Investigative Ophthalmology and Visual Science (suppl.) 31, in press.Google Scholar
Holden, A.L. (1981). Classifying and comparing retinal ganglion cells. Brain, Behavior, and Evolution 18, 188193.Google Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life-style: comparative optics and retinal organization. In Hand-book of Sensory Physiology; Vol. VII/5. The Visual System of Vertebrates, ed. Crescitelli, F., pp. 697756. Berlin: Springer Verlag.Google Scholar
Hughes, A. (1981). Population magnitudes and distribution of the major modal classes of cat retinal ganglion cell as estimated from HRP filling and a systematic survey of the soma diameter spectra for classical neurones. Journal of Comparative Neurology 197, 303339.Google Scholar
Illing, R.-B. & Wässle, H. (1981). The retinal projection to the thalamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Koch, C., Poggio, T. & Torre, V. (1982). Retinal ganglion cells: a functional interpretation of dendritic morphology. Philosophical Transactions of the Royal Society B (London) 298, 227264.Google Scholar
Kock, J.-H. & Reuter, T. (1978). Retinal ganglion cells in the crucian carp (Carassius carassius), II: Overlap, shape, and tangential orientation of dendritic trees. Journal of Comparative Neurology 179, 549568.Google Scholar
Kolb, H. (1979). The inner plexiform layer in the retina of the cat: electron-microscopic observations. Journal of Neurocytology 8, 295329.Google Scholar
Kolb, H., Nelson, R. & Mariani, A. (1981). Amacrine cells, bipolar cells, and ganglion cells of the cat retina: a Golgi study. Vision Research 21, 10811114.CrossRefGoogle ScholarPubMed
Lennie, P. (1980). Parallel visual pathways: a review. Vision Research 20, 561594.CrossRefGoogle ScholarPubMed
Lennie, P. & Perry, V.H. (1981). Spatial contrast sensitivity of cells in the lateral geniculate nucleus of the rat. Journal of Physiology (London) 315, 6979.Google Scholar
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1981). Retinal ganglion cells classes in the Old World monkey: morphology and central projections. Science 213, 11391142.Google Scholar
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1985). Central projections of cat retinal ganglion cells. Journal of Comparative Neurology 237, 216226.Google Scholar
Masland, R.H. (1988). Amacrine cells. Trends in Neurosciences 11, 405410.Google Scholar
McGuire, B.A., Stevens, J.K. & Sterling, P. (1986). Microcircuitry of beta ganglion cells in cat retina. Journal of Neuroscience 6, 907918.Google Scholar
Nelson, R.E., Famiglietti, E.V. & Kolb, H. (1978). Intracellular staining reveals different levels of stratification for ON- and OFF-center ganglion cells in cat retina. Journal of Neurophysiology 41, 472483.CrossRefGoogle ScholarPubMed
Oyster, C.W., & Barlow, H.B. (1967). Direction-selective units in rabbit retina: distribution of preferred directions. Science 155, 841842.Google Scholar
Oyster, C.W., Simpson, J.I., Takahashi, E.S. & Soodak, R.E. (1980). Retinal ganglion cells projecting to the rabbit accessory optic system. Journal of Comparative Neurology 190, 4961.CrossRefGoogle Scholar
Peichl, L. (1989a). Alpha and delta ganglion cells in rat retina. Journal of Comparative Neurology 286, 120139.CrossRefGoogle ScholarPubMed
Peichl, L. (1989b). Dog retinal ganglion cells: morphological types and breed differences in topography. Society for Neuroscience Abstracts 15, 1207.Google Scholar
Peichl, L. (1989c). Zur Organisation der Netzhaut: Struktur/Funktions Beziehungen und ein Speziesvergleich retinaler Ganglienzellen. Fortschritte der Ophthalmologie 86, 4753.Google Scholar
Peichl, L. (1990). Prinzipien der bildverarbeitung in der retina. Optometrie 390, 312.Google Scholar
Peichl, L. & Wässle, H. (1981). Morphological identification of ON- and OFF-center brisk-transient (Y) cells in the cat retina (with an Appendix: Neurofibrillar staining of cat retinae, by Boycott, B.B. & Peichl, L.). Proceedings of the Royal Society B (London) 212, 139156.Google Scholar
Peichl, L. & Wässle, H. (1983). The structural correlate of the receptive-field center of alpha ganglion cells in the cat retina. Journal of Physiology (London) 341, 309324.Google Scholar
Peichl, L., Ott, H. & Boycott, B.B. (1987a). Alpha ganglion cells in mammalian retinae. Proceedings of the Royal Society B (London) 231, 169197.Google Scholar
Peichl, L., Buhl, E.H. & Boycott, B.B. (1987b). Alpha ganglion cells in rabbit retina. Journal of Comparative Neurology 263, 2541.Google Scholar
Perry, V.H. (1979). The ganglion cell layer of the retina of the rat: a Golgi study. Proceedings of the Royal Society B (London) 204, 363375.Google Scholar
Perry, V.H. & Cowey, A. (1981). The morphological correlates of X and Y-like retinal ganglion cells in the retina of monkeys. Experimental Brain Research 43, 426428.Google Scholar
Perry, V.H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey's retina: implications for central magnification factors. Vision Research 12, 17951810.Google Scholar
Perry, V.H., Oehler, R. & Cowey, A. (1984). Retinal ganglion cells that project to the dorsal lateral geniculate nucleus in the macaque monkey. Neuroscience 12, 11011123.Google Scholar
Polyak, S.L. (1941). The Retina. Chicago, Illinois: University of Chicago Press.Google Scholar
Reese, B.E. & Cowey, A. (1986). Large retinal ganglion cells in the rat: their distribution and laterality of projection. Experimental Brain Research 61, 375385.Google Scholar
Rodieck, R.W. (1988). The primate retina. In Comparative Primate Biology, Vol. 4: Neurosciences, ed. Steklis, H.D. & Erwin, J., pp. 203278. New York: Alan R. Liss.Google Scholar
Rodieck, R.W. & Brening, R.K. (1982). On classifying retinal ganglion cells by numerical methods. Brain, Behavior, and Evolution 21, 4246.CrossRefGoogle ScholarPubMed
Rodieck, R.W. & Brening, R.K. (1983). Retinal ganglion cells: properties, types, genera, pathways, and trans-species comparisons. Brain, Behavior, and Evolution 23, 121164.Google Scholar
Rodieck, R.W., Binmoeller, K.F. & Dineen, J. (1985). Parasol and midget ganglion cells of the human retina. Journal of Comparative Neurology 233, 115132.Google Scholar
Rowe, M.H. & Stone, J. (1977). Naming of neurones. Classification and naming of cat retinal ganglion cells. Brain, Behavior, and Evolution 14, 185216.CrossRefGoogle ScholarPubMed
Rowe, M.H. & Stone, J. (1980). The interpretation of variation in the classification of nerve cells. Brain, Behavior, and Evolution 17, 123151.Google Scholar
Saito, H.A. (1983). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology 221, 279288.CrossRefGoogle Scholar
Schall, J.D., Perry, V.H. & Leventhal, A.G. (1987). Ganglion cell dendritic structure and retinal topography in the rat. Journal of Comparative Neurology 257, 160165.Google Scholar
Shapley, R. & Perry, V.H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neurosciences 9, 229235.Google Scholar
Sherman, S.M. (1985). Functional organization of the W-, X-, and Y-cell pathways in the cat: a review and hypothesis. In Progress in Psychobiology and Physiological Psychology, Vol. II, ed. Sprague, J.M. & Epstein, A.N., pp. 233314. New York: Academic Press.Google Scholar
Silveira, L.C.L. (1985). Organização do sistema visual de roedores da Amazōnia: óptica ocular et distribuição das células ganglionares retinianas. Doctoral Thesis, Instituto de Biofisica da Universidade Federal do Rio de Janeiro, R.J. Brasil.Google Scholar
Silveira, L.C.L. & Perry, V.H. (1990). A neurofibrillar staining method for retina and skin: a simple modification for improved staining and reliability. Journal of Neuroscience Methods 33, 1121.Google Scholar
Silveira, L.C.L. & Perry, V.H. (1991). The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40, 217237.Google Scholar
Silveira, L.C.L., & Picanço-Diniz, C.W. & Oswaldo-Cruz, E. (1989). Distribution and size of ganglion cells in the retinae of large Amazon rodents. Visual Neuroscience 2, 221235.CrossRefGoogle ScholarPubMed
Stanford, L.R. (1987). X cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells. Journal of Neurophysiology 58, 940964.Google Scholar
Stanford, L.R. & Sherman, S.M. (1984). Structure/function relationships of retinal ganglion cells in the cat. Brain Research 297, 381386.Google Scholar
Stone, J. (1983). Parallel Processing in the Visual System. New York: Plenum Press.Google Scholar
Stone, J. & Fukuda, Y. (1974). Properties of cat retinal ganglion cells: a comparison of W cells with X and Y cells. Journal of Neurophysiology 37, 722748.Google Scholar
Stone, J. & Clarke, R. (1980). Correlation between soma size and dendritic morphology in cat retinal ganglion cells: evidence of further variation in the gamma–cell class. Journal of Comparative Neurology 192, 211217.Google Scholar
Straznicky, C. & Straznicky, I.T. (1988). Morphological classification of retinal ganglion cells in adult Xenopus laevis. Anatomy and Embryology 178, 143153.Google Scholar
Straznicky, C., Tóth, P. & Nguyen, V.S. (1990). Morphological classification and retinal distribution of large ganglion cells in the retina of Bufo marinus. Experimental Brain Research 79, 345356.Google Scholar
Sur, M., Esguerra, M., Garraghty, P.E., Kritzer, M.F. & Sherman, S.M. (1987). Morphology of physiologically identified retinogeniculate X and Y axons in the cat. Journal of Neurophysiology 58, 132.Google Scholar
Tauchi, M. & Masland, R.H. (1984). The shape and arrangement of the cholinergic neurons in the rabbit retina. Proceedings of the Royal Society B (London) 223, 101119.Google Scholar
Vaney, D.I. (1985). The morphology and topographic distribution of All amacrine cells in the cat retina. Proceedings of the Royal Society B (London) 224, 475488.Google Scholar
Vaney, D.I., Levick, W.R. & Thibos, L.N. (1981a). Rabbit retinal ganglion cells. Receptive–field classification and axonal conduction properties. Experimental Brain Research 44, 2733.Google Scholar
Vaney, D.I., Peichi, L. & Boycott, B.B. (1981b). Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. Journal of Comparative Neurology 199, 373391.Google Scholar
Vaney, D.I., Peichi, L. & Boycott, B.B. (1988). Neurofibrillar long–range amacrine cells in mammalian retinae. Proceedings of the Royal Society B (London) 235, 475488.Google Scholar
Vitek, D.J., Schall, J.D. & Leventhal, A.G. (1985). Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. Journal of Comparative Neurology 241, 111.Google Scholar
Voigt, T. (1986). Cholinergic amacrine cells in the rat retina. Journal of Comparative Neurology 248, 1935.Google Scholar
Wässle, H., (1982). Morphological types and central projections of ganglion cells in the cat retina. Progress in Retinal Research 1, 125152.Google Scholar
Wässle, H. & Boycott, B.B. (1991). Functional architecture of the mammalian retina. Physiological Reviews 71, in press.Google Scholar
Wässle, H. & Riemann, H.J. (1978). The mosaic of nerve cells in the mammalian retina. Proceedings of the Royal Society B (London) 200, 441461.Google Scholar
Wässle, H., Levick, W.R. & Cleland, B.G. (1975). The distribution of the alpha–type of ganglion cells in the cat's retina. Journal of Comparative Neurology 159, 419437.CrossRefGoogle ScholarPubMed
Wässle, H., Peichi, L. & Boycott, B.B. (1978). Topography of horizontal cells in the retina of the domestic cat. Proceedings of the Royal Society B (London) 203, 269291.Google Scholar
Wässle, H., Peichi, L. & Boycott, B.B. (1981a). Morphology and topography of ON– and OFF–alpha cells in the cat retina. Proceedings of the Royal Society B (London) 212, 157175.Google Scholar
Wässle, H., Peichi, L. & Boycott, B.B. (1981b). Dendritic territories of cat retinal ganglion cells. Nature 292, 344345.Google Scholar
Wässle, H., Boycott, B.B. & Illing, R.–B. (1981C). Morphology and mosaic of ON–and OFF–beta cells in the cat retina and some functional considerations. Proceedings of the Royal Society B (London) 212, 177195.Google Scholar
Wässle, H., Voigt, T. & Patel, B. (1987). Morphological and immunocytochemical identification of indoleamine–accumulating neurons in the cat retina. Journal of Neuroscience 7, 15741585.Google Scholar
Watanabe, M. & Rodieck, R.W. (1989). Parasol and midget ganglion cells of the primate retina. Journal of Comparative Neurology 289, 434454.Google Scholar
Wilson, P.D. & Condo, G.J. (1985). Beta–like ganglion cells in the retina of the North American opossum. Brain Research 331, 155159.Google Scholar
Wong, R.O.L., Wye–Dvorak, J. & Henry, G.H. (1986). Morphology and distribution of neurons in the retinal ganglion cell layer of the adult Tammar Wallaby (Macropus eugenii). Journal of Comparative Neurology 253, 112.Google Scholar