Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T03:33:15.390Z Has data issue: false hasContentIssue false

Topography and extent of visual-field representation in the superior colliculus of the megachiropteran Pteropus

Published online by Cambridge University Press:  02 June 2009

Marcello G.P. Rosa
Affiliation:
Vision, Touch, and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, QLD 4072, Australia
Leisa M. Schmid
Affiliation:
Vision, Touch, and Hearing Research Centre, Department of Physiology and Pharmacology, University of Queensland, QLD 4072, Australia

Abstract

It has been proposed that flying foxes (genus Pteropus) have a primate-like pattern of representation in the superficial layers of the superior colliculus (SC), whereby the visual representation in this structure is limited by the same decussation line that limits the retino-geniculo-cortical projection (Pettigrew, 1986). To test this hypothesis, visual receptive fields were plotted based on single- and multi-unit recordings in the SC of ten flying foxes. A complete representation of the contralateral hemifield was observed in the SC. Although the binocular hemifield of vision in Pteropus is 54 deg wide, receptive-field centers invaded the ipsilateral hemifield by only 8 deg, and the receptive-field borders by 13 deg. This invasion is similar to that observed at the border between visual areas VI and V2 in the occipital cortex. The extent of the ipsilateral invasion was not affected by a lesion that completely ablated the occipital visual areas, thus suggesting that this invasion may be consequence of a zone of nasotemporal overlap in the retinal projections to the two colliculi. Neurones located in the superficial layers typically responded briskly to stimulation of both eyes, with a bias towards the contralateral eye. After cortical lesions the neuronal responses to the ipsilateral eye were depressed, and the ocular-dominance histograms shifted towards an even stronger dominance by the contralateral eye. However, cells located in the rostral pole of the SC remained responsive to the ipsilateral eye after cortical lesions. Responses in the stratum opticum and stratum griseum intermediate were more severely affected by cortical lesions than those in the stratum griseum superficiale. Our results demonstrate that the SC in flying foxes retain some generalized mammalian characteristics, such as the stronger direct projections of the contralateral eye and the location of the upper, lower, central, and peripheral representations in the SC. Nonetheless, the extent of visual representation in the SC demonstrates a specialized, primate-like pattern. These observations are consistent with the hypothesis that megachiropterans are members of a group that branched off early during the differentiation of primates from basal mammals.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allman, J.M. (1977). Evolution of the visual system in the early primates. In Progress in Physiology and Psychology, Vol. 7, ed. Sprague, J. & Epstein, A., pp. 153. New York: Academic Press.Google Scholar
Allman, J.M. & Kaas, J.H. (1974). The organization of the second visual area (V-II) in the owl monkey: A second-order transformation of the visual hemifield. Brain Research 76, 247265.CrossRefGoogle ScholarPubMed
Antonini, A., Berlucchi, G. & Sprague, J.M. (1978). Indirect, across-the-midline retinotectal projections and representation of the ipsi-lateral visual field in the superior colliculus of the cat. Journal of Neurophysiology 41, 285304.CrossRefGoogle Scholar
Antonini, A., Berlucchi, G., Marzi, C.A. & Sprague, J.M. (1979). Importance of the corpus callosum for visual receptive fields of single neurons in cat superior colliculus. Journal of Neurophysiology 42, 137152.CrossRefGoogle ScholarPubMed
Apter, J.T. (1945). Projection of the retina on the superior colliculus of cats. Journal of Neurophysiology 8, 123134.CrossRefGoogle Scholar
Barlow, H.B., Blakemore, C.B. & Pettigrew, J.D. (1967). The neural mechanism of binocular depth discrimination. Journal of Physiology (London) 193, 327342.CrossRefGoogle ScholarPubMed
Berman, N. & Cynader, M. (1972). Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. Journal of Physiology (London) 224, 363389.CrossRefGoogle ScholarPubMed
Bodian, D. (1937). An experimental study of the optic tracts and retinal projection of the Virginia opossum. Journal of Comparative Neurology 66, 113144.CrossRefGoogle Scholar
Buhl, E.H. & Dann, J.F. (1990). Basal dendrites are a regular feature of hippocampal granule cells in flying fox hippocampus. Neuroscience Letters 116, 263268.CrossRefGoogle ScholarPubMed
Buhl, E.H. & Dann, J.F. (1991). Cytoarchitecture, neuronal composition and entorhinal afferents of the flying fox hippocampus. Hippocampus 1, 131152.CrossRefGoogle ScholarPubMed
Cotter, J.R. (1985). Retinofugal projections of the big brown bat, Eptesicus fuscus, and the neotropical fruit bat, Artibeus jamaicencis. American Journal of Anatomy 172, 222231.CrossRefGoogle Scholar
Cowey, A. & Perry, V.H. (1980). The projection of the fovea to the superior colliculus in rhesus monkeys. Neuroscience 5, 5361.CrossRefGoogle Scholar
Cynader, M. & Berman, N. (1972). Receptive-field organization of monkey superior colliculus. Journal of Neurophysiology 35, 187201.CrossRefGoogle ScholarPubMed
De Bruyn, E.J., Wise, V.L. & Casagrande, V.A. (1980). The size and topographic distribution of retinal ganglion cells in the Galago. Vision Research 20, 315327.CrossRefGoogle Scholar
Dow, B.M., Vautin, R.G. & Bauer, R. (1985). The mapping of visual space onto foveal striate cortex in the macaque monkey. Journal of Neuroscience 5, 890902.CrossRefGoogle ScholarPubMed
Dräger, U.C. & Hubel, D.H. (1976). Topography of visual and somatosensory projections to mouse superior colliculus. Journal of Neurophysiology 39, 91101.CrossRefGoogle ScholarPubMed
Feldon, S., Feldon, P. & Kruger, L. (1970). Topography of the retinal projection upon the superior colliculus of the cat. Vision Research 10, 135143.CrossRefGoogle ScholarPubMed
Finlay, B.L., Schneps, S.E., Wilson, K.G. & Schneider, G.E. (1978). Topography of visual and somatosensory projections to the superior colliculus of the golden hamster. Brain Research 142, 223235.CrossRefGoogle Scholar
Fukuda, Y., Sawai, H., Watanabe, K., Wakakuwa, K. & Morigiwa, K. (1989). Nasotemporal overlap of crossed and uncrossed retinal ganglion cell projections in the Japanese monkey (Macaca fuscata). Journal of Neuroscience 9, 25532573.CrossRefGoogle ScholarPubMed
Garey, L.J. & Powell, T.P.S. (1968). The projection of the retina in the cat. Journal of Anatomy 102, 189222.Google ScholarPubMed
Gattass, R., Sousa, A.P.B. & Rosa, M.G.P. (1987). Visual topography of VI in the Cebus monkey. Journal of Comparative Neurology 259, 529548.CrossRefGoogle Scholar
Goldberg, M.E. & Wurtz, R.H. (1972). Activity of superior colliculus in behaving monkey. 1. Visual receptive fields of single neurons. Journal of Neurophysiology 35, 542559.CrossRefGoogle Scholar
Graybiel, A.M. (1975). Anatomical organization of retinotectal afferents in the cat: An autoradiographic study. Brain Research 96, 123.CrossRefGoogle Scholar
Harting, J.K. & Guillery, R.W. (1976). Organization of retinocellular pathways in the cat. Journal of Comparative Neurology 166, 133144.CrossRefGoogle ScholarPubMed
Harting, J.K., Van Lieshout, D.P., Hashikawa, T. & Weber, J.T. (1991). The parabigeminogeniculate projection: Connectional studies in eight mammals. Journal of Comparative Neurology 305, 550581.Google ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology (London) 195, 215243.CrossRefGoogle ScholarPubMed
Hubel, D.H., Levay, S. & Wiesel, T.N. (1975). Mode of termination of retinotectal fibers in macaque monkey: An autoradiographic study. Brain Research 96, 2540.CrossRefGoogle ScholarPubMed
Hughes, A. (1971). Topographical relationships between the anatomy and physiology of the rabbit visual system. Documenta Ophthalmologica 30, 33159.CrossRefGoogle ScholarPubMed
Hughes, A. (1976). A supplement to the cat schematic eye. Vision Research 16, 149154.CrossRefGoogle Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In Handbook of Sensory Physiology, Vol. VII/5, The Visual System in Vertebrates, ed. Crescitelli, F., pp. 613756. Berlin: Springer-Verlag.CrossRefGoogle Scholar
Kaas, J.H., Harting, J.K. & Guillery, R.W. (1974). Representation of the complete retina in the contralateral superior colliculus of some mammals. Brain Research 65, 343346.CrossRefGoogle ScholarPubMed
Kaas, J.H. & Preuss, T.M. (1993). Archontan affinities as reflected in the visual system. In Mammal Phylogeny: Placentals, ed. Szalay, F.S., pp. 115128. New York: Springer-Verlag.CrossRefGoogle Scholar
Kadoya, S., Wolin, L.R. & Massopust, L.C. Jr. (1971). Photically evoked unit activity in the tectum opticum of the squirrel monkey. Journal of Comparative Neurology 142, 495508.CrossRefGoogle ScholarPubMed
Kennedy, H., Martin, K.A.C., Orban, G.A. & Whitteridge, D. (1985). Receptive field properties of neurones in visual area 1 and visual area 2 in the baboon. Neuroscience 14, 405415.CrossRefGoogle ScholarPubMed
Kennedy, W. (1991). Origins of the corticospinal tract in the flying fox: Correlation with cytoarchitecture and electrophysiology. MSc. Thesis, University of Queensland, Brisbane.Google Scholar
Krubitzer, L.A., Calford, M.B. & Schmid, L.M. (1993). Connections of somatosensory cortex in megachiropteran bats: The evolution of complex sensory systems in mammals. Journal of Comparative Neurology 327, 473506.CrossRefGoogle Scholar
Lane, R.H., Allman, J.M. & Kaas, J.H. (1971). Representation of the visual field in the superior colliculus of the grey squirrel (Sciurus carolinensis) and the tree shrew (Tupaia glis). Brain Research 26, 277292.CrossRefGoogle ScholarPubMed
Lane, R.H., Allman, J.M., Kaas, J.H. & Miezin, P.M. (1973). The visuotopic organization of the superior colliculus of the owl monkey (Aotus trivirgatus) and the bush baby (Galago senegalensis). Brain Research 60, 335349.CrossRefGoogle ScholarPubMed
Lane, R.H., Kaas, J.H. & Allman, J.M. (1974). Visuotopic organization of the superior colliculus in normal and Siamese cats. Brain Research 70, 413430.CrossRefGoogle ScholarPubMed
Lashley, K.S. (1934). The mechanisms of vision: VII. The projection of the retina upon the primary visual centers in the rat. Journal of Comparative Neurology 59, 341373.CrossRefGoogle Scholar
Laties, A.M. & Sprague, J.M. (1966). The projection of optic fibers to the visual centers in the cat. Journal of Comparative Neurology 127, 3570.CrossRefGoogle Scholar
Le Gros Clark, W.E. (1959). The Antecedents of Man. Edinburgh: Edinburgh University Press.Google Scholar
Linden, R. & Perry, V.H. (1983). Massive retinotectal projection in the rat. Brain Research 111, 145149.CrossRefGoogle Scholar
Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, Tomus I, editio decima, reformata. Stockholm: Laurentii Salvii.Google Scholar
Magnin, M., Cooper, H.M. & Mick, G. (1989). Retinohypothalamic pathway: A breach in the law of Newton-Müller-Gudden? Brain Research 488, 390397.CrossRefGoogle ScholarPubMed
Mark, R.F., James, A.C. & Sheng, X.-M. (1993). Geometry of the representation of the visual field on the superior colliculus of the wallaby (Macropus eugenii). I. Normal Projection. Journal of Comparative Neurology 330, 303314.CrossRefGoogle ScholarPubMed
Martin, R.D. (1990). Primate Origins and Evolution: A Phylogenetic Reconstruction. Princeton, New Jersey: Princeton University Press.Google Scholar
McIlwain, J.T. (1983). Representation of the visual streak in visuotopic maps of the cat's superior colliculus: Influence of the mapping variable. Vision Research 23, 507516.CrossRefGoogle ScholarPubMed
McIlwain, J.T. & Buser, P. (1968). Receptive fields of single cells in the cat's superior colliculus. Experimental Brain Research 5, 314325.CrossRefGoogle ScholarPubMed
McKenna, M.C. (1975). Towards a phylogenetic classification of the mammalia. In Phylogeny of the Primates: A Multidisciplinary Approach, ed. Luckett, W.P. & Szalay, F.S., pp. 2146. New York: Plenum Press.CrossRefGoogle Scholar
Mėndez-Otero, R., Rocha-Miranda, C.E. & Perry, V.H. (1980). The organization of the parabigemino-tectal projections in the opossum. Brain Research 198, 183189.CrossRefGoogle ScholarPubMed
Nikara, T., Bishop, P.O. & Pettigrew, J.D. (1968). Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research 6, 353372.CrossRefGoogle ScholarPubMed
Nudo, R.J., Sutherland, D.P. & Masterson, R.B. (1993). Inter- and intra-laminar distribution of tectospinal neurons in 23 mammals. Brain, Behavior, and Evolution 42, 123.Google ScholarPubMed
Payne, B.R. (1990). Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat's visual cortex. Visual Neuroscience 4, 445474.CrossRefGoogle Scholar
Perry, V.H. & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12, 11251137.CrossRefGoogle Scholar
Pettigrew, J.D. (1986). Flying primates? Megabats have the advanced pathway from the eye to midbrain. Science 231, 13041306.CrossRefGoogle ScholarPubMed
Pettigrew, J.D. (1994). Flying primates: Crashed? Or crashed through? In Evolution, Ecology, and Physiology of Bats, ed. Racey, P., Oxford: Clarendon (in press).Google Scholar
Pettigrew, J.D., Dreher, B., Hopkins, C.S., McCall, M.J. & Brown, M. (1988). Peak density and distribution of ganglion cells in the retinae of microchiropteran bats: Implications for visual acuity. Brain, Behavior, and Evolution 32, 3956.Google ScholarPubMed
Pettigrew, J.D., Jamieson, B.G.M., Robson, S.K., Hall, L.S., McAnally, K.I. & Cooper, H.M. (1989). Phylogenetic relations between microbats, megabats and primates (Mammalia: Chiroptera and Primates). Philosophical Transactions of the Royal Society B (London) 325, 489559.Google ScholarPubMed
Polyak, S.D. (1957). The Vertebrate Visual System. Chicago, Illinois: University of Chicago Press.Google Scholar
Ramôa, A.S., Rocha-Miranda, C.E., Méndez-Otero, R. & Josuá, K.M. (1983). Visual receptive fields in the superficial layers of the opossum's superior colliculus: Representation of the ipsi- and contralateral hemifields by each eye. Experimental Brain Research 49, 373380.CrossRefGoogle ScholarPubMed
Rizzolatti, G., Tradardi, V. & Camarda, R. (1970). Unit responses to visual stimuli in the cat's superior colliculus after removal of the visual cortex. Brain Research 24, 336339.CrossRefGoogle ScholarPubMed
Rocha-Miranda, C.E., Cavalcante, L.A., Gawryszewski, L.G., Linden, R. & Volchan, E. (1978). The vertical meridian representation and the pattern of retinotectal projections in the opossum. In Opossum Neurobiology, ed. Rocha-Miranda, C.E. & Lent, R., pp. 113126. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Rosa, M.G.P., Schmid, L.M., Krubitzer, L.A. & Pettigrew, J.D. (1993 a). Retinotopic organization of the primary visual cortex of flying foxes (Pteropus poliocephalus and Pteropus scapulatus). Journal of Comparative Neurology 335, 5572.CrossRefGoogle ScholarPubMed
Rosa, M.G.P., Schmid, L.M. & Pettigrew, J.D. (1993 b). Second and third visual areas in the flying fox. Society for Neurosciences Abstracts 19, 769.Google Scholar
Rosa, M.G.P., Schmid, L.M. & Pettigrew, J.D. (1994). Organization of the second visual area in the megachiropteran bat Pteropus. Cerebral Cortex 4, 5268.CrossRefGoogle ScholarPubMed
Rowe, M.H. & Dreher, B. (1982). Retinal W-cell projections to the medial interlaminar nucleus in the cat: Implications for ganglion cell classification. Journal of Comparative Neurology 204, 117133.CrossRefGoogle Scholar
Schiller, P.H., Stryker, M., Cynader, M. & Berman, N. (1974). Response characteristics of single cells in monkey superior colliculus following ablation or cooling of visual cortex. Journal of Neurophysiology 37, 181194.CrossRefGoogle ScholarPubMed
Siminoff, R., Schwassmann, H.O. & Kruger, L. (1966). An electrophysiological study of the visual projection to the superior colliculus of the rat. Journal of Comparative Neurology 127, 435444.CrossRefGoogle Scholar
Sousa, A.P.B., Gattass, R., Hokoç, J.N. & Oswaldo-Cruz, E. (1978). The visual field of the opossum. In Opossum Neurobiology, ed. Rocha-Miranda, C.E. & Lent, R., pp. 5165. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Sprague, J.M., Marchiafava, P.L. & Rizzolatti, G. (1968). Unit responses to visual stimuli in the superior colliculus of the unanesthetised mid-pontine cat. Archives Italiennes de Biologie 106, 169193.Google Scholar
Stein, B.E. & Meredith, M.A. (1990). Functional organization of the superior colliculus. In Vision and Visual Dysfunction, Vol. 4: The Neural Basis of Visual Function, ed. Leventhal, A.G., pp. 85110. London: Macmillan.Google Scholar
Sterling, P. & Wickelgren, B.G. (1970). Function of the projection from the visual cortex to the superior colliculus. Brain, Behavior, and Evolution 3, 210218.Google Scholar
Stone, J. (1966). The naso-temporal division of the cat's retina. Journal of Comparative Neurology 126, 585600.Google ScholarPubMed
Stone, J., Leicester, J. & Sherman, S.M. (1973). The naso-temporal division of the monkey's retina. Journal of Comparative Neurology 150, 333348.CrossRefGoogle ScholarPubMed
Straschill, M. & Hoffmann, K.P. (1969). Functional aspects of localization in the cat's tectum opticum. Brain Research 13, 274283.CrossRefGoogle ScholarPubMed
Szalay, F.S. (1977). Phylogenetic relationships and a classification of the eutherian mammals. In Major Patterns in Vertebrate Evolution, ed. Hecht, M.K., Goody, P.C. & Hecht, B.M., pp. 315374. New York: Plenum Press.CrossRefGoogle Scholar
Thiele, A., Vogelsang, M. & Hoffmann, K.P. (1991). Pattern of retinotectal projection in the megachiropteran bat Rousettus aegyptiacus. Journal of Comparative Neurology 314, 671683.CrossRefGoogle ScholarPubMed
Tiao, Y.-C. & Blakemore, C. (1976). Functional organization in the superior colliculus of the golden hamster. Journal of Comparative Neurology 168, 483504.Google ScholarPubMed
Updyke, B.V. (1974). Characteristics of unit responses in superior colliculus of the Cebus monkey. Journal of Neurophysiology 37, 896909.CrossRefGoogle ScholarPubMed
Van Essen, D.C. & Maunsell, J.H.R. (1980). Two-dimensional maps of cerebral cortex. Journal of Comparative Neurology 191, 255281.CrossRefGoogle ScholarPubMed
Volchan, E., Rocha-Miranda, C.E., Lent, R. & Gawryszewski, L.G. (1978). The retinotopic organization of the superior colliculus in the opossum (Didelphis marsupialis aurita). In Opossum Neurobiology, ed. Rocha-Miranda, C.E. & Lent, R., pp. 107112. Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
Volchan, E., Gawryszewski, L.G. & Rocha-Miranda, C.E. (1982). Visuotopic organization of the superior colliculus of the opossum. Experimental Brain Research 46, 263268.CrossRefGoogle ScholarPubMed
Volchan, E., Bernardes, R.F., Rocha-Miranda, C.E., Gleiser, L. & Gawryszewski, L.G. (1988). The ipsilateral field representation in the striate cortex of the opossum. Experimental Brain Research 73, 297314.CrossRefGoogle ScholarPubMed
Wagor, E., Mangini, N.J. & Pearlman, A.L. (1980). Retinotopic organization of striate and extrastriate visual cortex in the mouse. Journal of Comparative Neurology 193, 187202.CrossRefGoogle ScholarPubMed
Wässle, H. & Illing, R.B. (1980). The retinal projections to the superior colliculus in the cat: A quantitative study with HRP. Journal of Comparative Neurology 190, 333356.CrossRefGoogle Scholar
Wilson, M.E. & Toyne, M.J. (1970). Retinotectal and corticotectal projection in Macaca mulatta. Brain Research 24, 395406.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed
Woolsey, C.N., Carlton, T.G., Kaas, J.H. & Earls, F.J. (1971). Projection of the visual field on superior colliculus of ground squirrel (Citellus tridecemlineatus). Vision Research 11, 115127.CrossRefGoogle ScholarPubMed