Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-25T05:31:08.989Z Has data issue: false hasContentIssue false

Topographic analysis of the ganglion cell layer in the retina of the four-eyed fish Anableps anableps

Published online by Cambridge University Press:  30 January 2007

FRANCISCO GILBERTO OLIVEIRA
Affiliation:
Departamento de Ciências Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Regional do Cariri, URCA, Crato, CE, Brasil
JOÃO PAULO COIMBRA
Affiliation:
Laboratório de Neuropatologia Experimental, Centro de Ciências Biológicas, Universidade Federal do Pará, UFPA, Brasil
ELIZABETH SUMI YAMADA
Affiliation:
Laboratório de Neuropatologia Experimental, Centro de Ciências Biológicas, Universidade Federal do Pará, UFPA, Brasil
LUCIANO FOGAÇA DE ASSIS MONTAG
Affiliation:
Museu Paraense Emílio Goeldi, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
FRANCYLLENA L. NASCIMENTO
Affiliation:
Museu Paraense Emílio Goeldi, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
VALÉRIA A. OLIVEIRA
Affiliation:
Museu Paraense Emílio Goeldi, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
DIÓGENES LUÍS DA MOTA
Affiliation:
Departamento de Histologia e Embriologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
ALEXANDRE MOTTA BITTENCOURT
Affiliation:
Departamento de Anatomia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
VALDIR LUNA DA SILVA
Affiliation:
Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil
BELMIRA LARA DA SILVEIRA ANDRADE DA COSTA
Affiliation:
Departamento de Fisiologia e Farmacologia, Centro de Ciências Biológicas, Universidade Federal de Pernambuco, UFPE, Recife, PE, Brasil

Abstract

Fish of the genus Anableps (Anablepidae, Cyprinodontiformes) have eyes that are adapted for simultaneous aerial and aquatic vision. In this study we investigate some of the corresponding retinal specializations of the adult Anableps anableps eye using retinal transverse sections and wholemounts. The linear dimensions of the retina were found to be asymmetric with a greater representation of the dorsal compared to the ventral visual field. The total number of neurons in the ganglion cell layer of the ventral hemiretina was on average 3.6 times greater than the values obtained in the dorsal hemiretina. Isodensity contour maps revealed a prominent horizontal visual streak in the ventral hemiretina with an average peak cell density of 18,286 cells/mm2. A second less-well-developed horizontal visual streak was also observed in the dorsal hemiretina. A sub-population of large cells with soma areas between 74 and 188 μm2 was identified and found to be distributed evenly across both hemiretinas. Together, these results show that the sampling gain of the ventral retina is significantly greater than the dorsal segment, that retinal specializations important for mediating acute vision are present in the parts of the visual field immediately above and below the surface of the water, and that visual functions related with the large ganglion cells require more even sampling across the visual field. The relevance of these retinal specializations to the feeding and other behavioral strategies adopted by Anableps is discussed.

Type
Research Article
Copyright
© 2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Adhami, M.A., Oar, J., & Al Khodur, M. (2001). Embryonic fissure and photoreceptor differentiation in the eye of adult Garra rufa Heckel 1843 (Cyprinidae, Teleostei). Folia Biological (Krakow) 49, 183190.Google Scholar
Albensi, B.C. & Powell, J.H. (1998). The differential optomotor response of the four-eyed fish Anableps anableps. Perception 27, 14751483.CrossRefGoogle Scholar
Avery, J.A. & Bowmaker, J.K. (1982). Visual pigments in the “four-eyed” fish Anableps anableps. Nature 298, 6263.CrossRefGoogle Scholar
Bailes, H.J., Robinson, J.S.R., Trezise, A.E.O., & Collin, S.P. (2006). Morphology, characterization, and distribution of retinal photoreceptors in the Australian lungfish Neoceratodus forsteri (Krefft, 1870). Journal of Comparative Neurology 494, 381397.CrossRefGoogle Scholar
Beach, D.H. & Jacobson, M. (1979). Patterns of cell proliferation in the retina of the clawed frog during development. Journal of Comparative Neurology 183, 603613.CrossRefGoogle Scholar
Borwein, B. & Hollenberg, M.J. (1973). The photoreceptors of the “four-eyed” fish, Anableps anableps L. Journal of Morphology 140, 405442.CrossRefGoogle Scholar
Bozzano, A. & Collin, S.P. (2000). Retinal ganglion cell topography in elasmobranchs. Brain Behavior and Evolution 55, 191208.CrossRefGoogle Scholar
Bozzano, A. & Catalan, I.A. (2002). Ontogenetic changes in the retinal topography of the European hake, Merluccius merluccius: Implications of feeding and depth distribution. Marine Biology 141, 549559.Google Scholar
Bozzano, A. (2003). Vision in the rufus snake eel, Ophichthus rufus: Adaptive mechanisms for a burrowing life-style. Marine Biology 143, 167174.CrossRefGoogle Scholar
Bridges, C.D. (1982). Porphyropsin in retina of four-eyed fish, Anableps anableps. Nature 300, 384.Google Scholar
Butcher, E.O. (1938). The structure of the retina of Fundulus heteroclitus and the regions of the retina associated with the different chromatophoric responses. Journal of Experimental Zoology 79, 275293.CrossRefGoogle Scholar
Cameron, D.A. (1995). Asymmetric retinal growth in the adult teleost green sunfish (Lepomis cyanellus). Visual Neuroscience 12, 95112.CrossRefGoogle Scholar
Cid, E., Velasco, A., Ciudad, J., Órfao, A., Aijon, J., & Lara, J.M. (2002). Quantitative evaluation of the distribution of proliferating cells in the adult retina in three cyprinid species. Cell Tissue Research 308, 4759.CrossRefGoogle Scholar
Coimbra, J.P., Marceliano, M.L.V., Andrade-da-Costa, B.L.S., Yamada, E.S. (2006). The retina of tyrant flycatchers: Topographic organization of neuronal density and size in the ganglion cell layer of the great kiskadee Pitangus sulphuratus and the rusty margined flycatcher Myiozeletes cayanensis (Aves:Tyrannidae). Brain Behavior and Evolution 68, 1525.CrossRefGoogle Scholar
Collin, S.P. (1988). The retina of the shovel-nosed ray, Rhinobatos batillum (Rhinobatidae): Morphology and quantitative analysis of the ganglion, amacrine and bipolar cell populations. Experimental Biology 47, 195207.Google Scholar
Collin, S.P. (1989). Topography and morphology of retinal ganglion cells in the coral trout Plectropomus leopardus (Serranidae): A retrograde cobaltous-lysine study. Journal of Comparative Neurology 281, 143158.CrossRefGoogle Scholar
Collin, S.P. & Northcutt, R.G. (1993). The visual system of the Florida garfish, Lepisosteus platyrhincus (Ginglymodi): III. Retinal ganglion cells. Brain Behavior and Evolution 42, 295320.CrossRefGoogle Scholar
Collin, S.P. (1997). Specializations of the teleost visual system: Adaptive diversity from shallow-water to deep-sea. Acta Physiologica Scandinavica 161 (suppl.), 524.Google Scholar
Collin, S.P. (1999). Behavioural ecology and retinal cell topography. In Adaptive Mechanisms in the Ecology of Vision, eds. Archer, S.N., Djamgoz, M.B.A., Loew, E.R., Partridge, J.C. & Vallerga, S., pp. 509535. London, England: Kluwer Academic Publishers.CrossRef
Collin, S.P. & Pettigrew, J.D. (1988a). Retinal topography in reef teleosts I: Some species with well-developed areae but poorly-developed streaks. Brain Behavior and Evolution 31, 269282.Google Scholar
Collin, S.P. & Pettigrew, J.D. (1988b). Retinal topography in reef teleosts II. Some species with prominent horizontal streak and high-density areae. Brain Behavior and Evolution 31, 283295.Google Scholar
Collin, S.P. & Pettigrew, J.D. (1988c). Retinal ganglion cell topography in teleosts: A comparison between nissl-stained material and retrograde labeling from the optic nerve. Journal of Comparative Neurology 276, 412422.Google Scholar
Douglas, R.H., Collin, S.P., & Corrigan, J. (2002). The eyes of suckermouth armoured catfish (Loricariidae, subfamily Hypostomus): Pupil response, lenticular longitudinal spherical aberration and retinal topography. Journal of Experimental Biology 205, 34253433.Google Scholar
Dunn-Meynell, A.A. & Sharma, S.C. (1987). Visual system of the channel catfish (Ictalurus punctatus): II. The morphology associated with the multiple optic papillae and retinal ganglion cell distribution. Journal of Comparative Neurology 256, 166175.Google Scholar
Easter, S.S., Jr. (1992). Retinal growth in foveated teleosts: Nasotemporal asymmetry keeps the fovea in temporal retina. The Journal of Neuroscience 12, 23812392.Google Scholar
Eastman, J.T. (1988). Ocular morphology in Antartic Notothenioid fishes. Journal of Morphology 196, 283306.CrossRefGoogle Scholar
ESRI. (2002). ARCVIEW GIS 3.3. ESRI, United States.
Fernald, R.D. & Johns, P.R. (1980). Retinal specialization and growth in the cichlid fish, Haplochromis burtoni. American Zoology 20, 943.Google Scholar
Hayes, B., Martin, G.R., & de Brooke, L.M. (1991). Novel area subserving binocular vision in the retinae of procellariform seabirds. Brain Behavior and Evolution 37, 7984.Google Scholar
Hemmi, J.M. & Grünert, U. (1999). Distribution of photoreceptor types in the retina of a marsupial, the tammar wallaby (Macropus eugenii). Visual Neuroscience 16, 191302.CrossRefGoogle Scholar
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organization. In: Handbook of Sensory Physiology, Vol. VII/5, ed. Crescitelli, F. Berlin: Springer-Verlag.
Inouge, K. & Noto, S. (1962). Structure of the retina in Anableps (four-eyed fish). Zoological Magazine 71, 188191.Google Scholar
Ito, H. & Murakami, T. (1984). Retinal ganglion cells in two teleost species, Sebasticus marmoratus and Navodon modestus. Journal of Comparative Neurology 229, 8096.CrossRefGoogle Scholar
Kanungo, J., Swamynathan, S.K., & Piatigorsky, J. (2004). Abundant corneal gelsolin in Zebrafish and the “four-eyed” fish, Anableps anableps: Possible analogy with multifunctional lens crystalline. Experimental Eye Research 79, 949956.CrossRefGoogle Scholar
Mednick, A.S. & Springer, A.D. (1988). Asymmetric distribution of retinal ganglion cells in goldfish. Journal of Comparative Neurology 268, 4959.CrossRefGoogle Scholar
Meyer, D.L., Malz, C.R., & Jadhao, A.G. (1996). Nervus terminalis projection to the retina in the “four-eyed” fish, Anableps anableps. Neuroscience Letters 213, 8790.CrossRefGoogle Scholar
Miyazaki, T., Iwami, T., Somiya, H., & Meyer-Rochow, B. (2002). Retinal topography of ganglion cells and putative UV-sensitive cones in two Antartic fishes: Pagothenia borchgrevinki and Trematomus bernacchii (Nototheniidae). Zoological Science 19, 12231229.CrossRefGoogle Scholar
Munk, O. (1970). On the occurrence and significance of horizontal band-shaped retinal areae in teleosts. Videnkabelige Meddelelser fra Dansk Naturhistorik Forening i Kjobenhavn 133, 85120.Google Scholar
Reichenbach, A. & Robinson, S.R. (1995). Phylogenetic constraints on retinal organization and development. Progress in retinal and Eye Research 15, 139168.CrossRefGoogle Scholar
Robinson, S.R., Dreher, B., & McCall, M.J. (1989). Nonuniform retinal expansion during the formation of the rabbit's visual streak: implications for the ontogeny of mammalian retinal topography. Visual Neuroscience 2, 201219.CrossRefGoogle Scholar
Saidel, W.M. & Fabiane, R.S. (1998). Optomotor response of Anableps anableps on the field of view. Vision Research 38, 20012006.CrossRefGoogle Scholar
Schwab, I.R., Ho, V., Roth, A., Blankenship, T.N., & Fitzgerald, P.G. (2001). Evolutionary attempts at 4 eyes in vertebrates. Transactions American Ophthalmology Society 99, 145156.Google Scholar
Schwassmann, H.O. & Kruger, L. (1965). Experimental analysis of the visual system of the four-eyed fish Anableps microlepis. Vision Research 5, 269281.CrossRefGoogle Scholar
Sivak, J.G. (1976). Optics of the eye of the “Four-eyed fish” (Anableps anableps). Vision Research 16, 531534.CrossRefGoogle Scholar
Shand, J., Chin, S.M., Harman, A.M., Moore, S., & Collin, S.P. (2000). Variability in the location of the retinal ganglion cell area centralis is correlated with ontogenetic changes in feeding behavior in the black bream, Acanthopagrus butcheri (Sparidae, Teleostei). Brain Behavior and Evolution 55, 176190.CrossRefGoogle Scholar
Stone, J. (1981). The Wholemount Handbook. Sidney, Australian: Maitland Publications Pty. Ltda.
Swamynathan, S.K., Crawford, M.A., Robinson Jr, W.G., Kanungo, J., & Piiatigorsky, J. (2003). Adaptive differences in the structure and macromolecular compositions of the air and water corneas of the “four-eyed” fish (Anableps anableps). FASEB Journal 17, 19962005.CrossRefGoogle Scholar
Uemura, M., Somiya, H., Moku, M., & Kawaguchi, K. (2000). Temporal and mosaic distribution of large ganglion cells in the retina of a daggertooth aulopiform deep-sea fish (Anotopteus pharao). Philosophical Transactions of the Royal Society B (London) 355, 11611166.CrossRefGoogle Scholar
Von Bartheld, C.S. & Meyer, D.L. (1987). Comparative neurology of the optic tectum in ray-finned fishes: patterns of lamination formed by retinotectal projections. Brain Research 420, 277288.CrossRefGoogle Scholar
Zahl, P.A., McLaughlin, J.J.A., & Gomprecht, R.J. (1977). Visual versatility and feeding of the four-eyed fish Anableps. Copeia 3, 79.CrossRefGoogle Scholar