Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T02:00:43.407Z Has data issue: false hasContentIssue false

Retinal transformation at metamorphosis in the winter flounder (Pseudopleuronectes americanus)

Published online by Cambridge University Press:  02 June 2009

Barbara I. Evans
Affiliation:
Neuroscience Program and Psychology Department, Stanford University, Stanford
Russell D. Fernald
Affiliation:
Neuroscience Program and Psychology Department, Stanford University, Stanford

Abstract

Winter flounder (Pseudopleuronectes americanus) are hatched as bilaterally symmetric larvae which live near the ocean surface. At metamorphosis, they become laterally compressed, one eye migrates to the opposite side of the head, and they live the remainder of their lives lying on their blind side on the ocean floor. The present study characterizes and quantifies retinal cell distribution throughout the larval period and contrasts it with the adult retina. Based on light- and electron-microscopic analyses, retinas of larval flounder contain only a single cone-like photoreceptor type, arranged in a hexagonal array. In contrast, after metamorphosis, the adult retina has three types of photoreceptors: rods, single cones, and double cones. Rod photoreceptors are numerous in the ventral retina and decrease in density dorsad. The cone photoreceptor density, in contrast to rods, is higher in the dorsal retina decreasing ventrad. Adult cone photoreceptors are arranged in a square mosaic with four double cones surrounding one single cone. The differences in larval and adult retinal morphology reflect the distinctly different habitat each occupies.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamus, G., Arendt, A., Zam, Z.S., McDowell, J.H. & Hargrave, P.A. (1988). Use of peptides to select for anti-rhodopsin antibodies with desired amino-acid sequence specificities. Peptide Research 1, 4247.Google ScholarPubMed
Ahlbert, I.-B. (1973). Ontogeny of double cones in the retina of perch fry (Perca fluviatilis, Teleostei). Acta Zoologica 54, 241254.CrossRefGoogle Scholar
Ali, M.A. (1959). The ocular structure, retinomotor, and photobehavioral responses of juvenile Pacific Salmon. Canadian Journal of Zoology 37, 965996.CrossRefGoogle Scholar
Ali, M.A. & Anctil, M. (1976). Retinas of Fishes: An Atlas. Berlin, Heidelberg, New York: Springer-Verlag.CrossRefGoogle Scholar
Altshuler, D.M., Turner, D.L. & Cepko, C.L. (1991). Specification of cell type in the vertebrate retina. In Development of the Visual System, ed. Lam, D.M. & Shatz, C.J., pp. 3758. Cambridge Massachusetts: MIT Press.Google Scholar
Bathelt, D. (1970). Experimentelle und vergleichend morphologische Untersuchungen am visuellen System von Teleostiern. Zoologische Jahrbucher fuer Anatomie 87, 402470.Google Scholar
Blaxter, J.H.S. (1975). The eyes of larval fish. In Vision in Fish, ed. Ali, M.A., pp. 427445. New York: Plenum Press.CrossRefGoogle Scholar
Blaxter, J.H.S. & Jones, M.P. (1967). The development of the retina and retinomotor responses in the herring. Journal of the Marine Biological Association (U.K.) 47, 677697.CrossRefGoogle Scholar
Braekevelt, C.R. (1984). Retinal fine structure in the European eel, Anguilla anguilla. II. Photoreceptors of the glass eel stage. Anato-mischer Anzeiger Jena 157, 233243.Google ScholarPubMed
Braekevelt, C.R. (1982). Photoreceptor fine structure in the goldeye (Hiodon alosoides) (Teleost). Anatomia Embryologia 165, 177192.CrossRefGoogle ScholarPubMed
Branchek, T. & Bremiller, R. (1984). The development of photoreceptors in the zebrafish, Brachydanio rerio. I. Structure. Journal of Comparative Neurology 224, 107115.CrossRefGoogle ScholarPubMed
Cameron, D.A. & Pugh, E.N. Jr, (1991). Double cones as a basis for a new type of polarization vision in vertebrates. Nature 353, 161164.CrossRefGoogle ScholarPubMed
Chambers, R.C. & Leggett, W.C. (1987). Size and age at metamorphosis in marine fishes: An analysis of laboratory-reared winter flounder (Pseudopleuronectes americanus) with a review of variation in other species. Canadian Journal of Fisheries and Aquatic Sciences 44, 19361947.CrossRefGoogle Scholar
Cohen, A.I. (1972). Rods and cones. In Handbook of Sensory Physiology, Vol. VII/2, ed. Fuortes, M.G.F., pp. 63110. Berlin: Springer.Google Scholar
EngströM, K. (1960). Cone types and cone arrangement in the retina of some Cyprinids. Acta Zoologica 41, 277295.CrossRefGoogle Scholar
Engström, K. (1963). Cone types and cone arrangements in Teleost retinae. Ada Zoologica 44, 179243.CrossRefGoogle Scholar
Engström, K. & Ahlbert, I.-B. (1963). Cone types and cone arrangements in the retina of some flatfishes. Acta Zoologica 44, 119129.CrossRefGoogle Scholar
Es-Sounni, A. & Ali, M.A. (1985). A “new” type of rod in the retina of European eel, Anguilla anguilla L. Mikroscopie 42, 158167.Google Scholar
Evans, B.I., Hárosi, F.I. & Fernald, R.D. (1993). Photoreceptor spectral absorbance in larval and adult winter flounder (Pseudopleuronectes americanus). Visual Neuroscience 10, 10651071.CrossRefGoogle ScholarPubMed
Evans, B.I. & Fernald, R.D. (1990). Metamorphosis and fish vision. Journal of Neurobiology 21 (7), 10371052.CrossRefGoogle ScholarPubMed
Fernald, R.D. (1989). Retinal rod neurogenesis. In Development of the Vertebrate Retina, ed. Findlay, B.L. & Sengelaub, D.R., pp. 3142. New York and London: Plenum Press.CrossRefGoogle Scholar
Fujimoto, M., Arimoto, T., Morishita, F. & Naitoh, T. (1991). The background adaptation of the flatfish, Paralichthys olivaceus. Physiology and Behavior 50, 185188.CrossRefGoogle ScholarPubMed
Goldsmith, T.H. (1990). Optimization, constraint, and history in the evolution of eyes. The Quarterly Review of Biology 65 (3), 281322.CrossRefGoogle ScholarPubMed
Graf, W. & Baker, R. (1990). Neuronal adaptation accompanying metamorphosis in the flatfish. Journal of Neurobiology 21 (7), 11361152.CrossRefGoogle ScholarPubMed
Hagedorn, M.M. & Fernald, R.D. (1992). Retinal growth and cell addition during embryogenesis in the teleost, Haplochromis burtoni. Journal of Comparative Neurology 321, 193208.CrossRefGoogle ScholarPubMed
Hall, P.A. & Watt, F.M. (1989). Stem cells: The generation and maintenance of cellular diversity. Development 106, 619633.CrossRefGoogle ScholarPubMed
Humason, G.L. (1979). Animal Tissue Techniques. San Francisco, California: Freeman.Google Scholar
Kahn, A. J. (1974). An autoradiographic analysis of the time of appearance of neurons in the developing chick neural retina. Developmental Biology 38, 3040.CrossRefGoogle ScholarPubMed
Klein-Macphee, G. (1978). Synopsis of biological data for the winter flounder Pseudopleuronectes americanus (Walbaum). NOAA Technical Report NMFS Circular 414, 43 pp.Google Scholar
Kuenzer, P. & Wagner, H.-J. (1969). Bau und Anordnung der Sehzellen und Horizontalen in der Retina von Nannacara anomala (Cichlidae). Zeitschrift fuer Morphologie Tieren 65, 209224.Google Scholar
Larison, K.D. & Bremiller, R. (1990). Early onset of phenotype and cell patterning in the embryonic zebrafish retina. Development 109, 567576.CrossRefGoogle ScholarPubMed
Liem, K.F., Wallace, J.W. & Whalen, G. (1985). Flatfishes breathe symmetrically: An experimental reappraisal. Experimental Biology 44, 159172.Google ScholarPubMed
Lyall, A.H. (1957). Cone arrangement in the teleost retinae. Quarterly Journal of Microscopical Science 98, 189201.Google Scholar
Mark, R.F. & Marotte, L.R. (1992). Australian marsupials as models for the developing mammalian visual system. Trends in Neuroscience 15, 5157.CrossRefGoogle ScholarPubMed
McCracken, F.D. (1963). Seasonal movements of the winter flounder Pseudopleuronectes americanus (Walbaum), on the Atlantic coast. Journal of the Fisheries Research Board of Canada 20(2), 551586.CrossRefGoogle Scholar
Munk, O. (1989). Duplex retina in the mesopelagic deep-sea teleost Lestidiops affinis (Ege, 1930). Acta Zoologica 70, 143149.CrossRefGoogle Scholar
Muntz, W.R.A. (1964). The development of photopic and scotopic vision in the frog (Rana temporaria). Vision Research 4, 241250.CrossRefGoogle ScholarPubMed
Munz, F.W. & MacFarland, W.N. (1977). Evolutionary adaptations of fishes to the photic environment. In Handbook of Sensory Physiology, Vol. VII/5, ed. Crescitelli, F., pp. 193274. Berlin: Springer.Google Scholar
Neave, D.A. (1985). The dorsal light reactions of larval and metamorphosing flatfish. Journal of Fisheries Biology 26, 629640.CrossRefGoogle Scholar
Olla, B.L., Wicklund, R. & Wilk, S. (1969). Behavior of winter flounder in a natural habitat. Transactions of the American Fisheries Society 1969, 717720.CrossRefGoogle Scholar
Pankhurst, N.W. (1984). Retinal development in larval and juvenile European eel, Anguilla anguilla (L.). Canadian Journal of Zoology 62, 335343.CrossRefGoogle Scholar
Sandy, J.M. & Blaxter, J.H.S. (1980). A study of retinal development in larval herring and sole. Journal of the Marine Biological Association (U.K.) 60, 5971.CrossRefGoogle Scholar
Schmitt, E. & Kunz, Y.W. (1989). Retinal morphogenesis in the rainbow trout. Salmo gairdneri. Brain, Behavior, and Evolution 34, 4864.CrossRefGoogle ScholarPubMed
Sullivan, W.E. (1915). A description of the young stages of the winter flounder (Pseudopleuronectes americanus). Transactions of the American Fisheries Society 44, 125136.CrossRefGoogle Scholar
Wagner, H.-J. (1975). Comparative analysis of the patterns of receptor and horizontal cells in teleost fishes. In Vision in Fish, ed. Ali, M.A., pp. 517524. New York: Plenum Press.CrossRefGoogle Scholar
Williams, S.R. (1902). Changes accompanying the migration of the eye and observations on the tractus opticus and tectum opticum in Pseudopleuronectes americanus. Bulletin of the Museum of Comparative Zoology (Harvard) 40, 157.Google Scholar