Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-18T13:53:46.411Z Has data issue: false hasContentIssue false

Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat's cerebral cortex

Published online by Cambridge University Press:  02 June 2009

B. R. Payne
Affiliation:
Department of Anatomy, Housman Research Center, Boston University School of αMedicine, Boston

Abstract

The representation of the visual field in the architectonically defined transition zone between areas 17 and 18 of cat cerebral cortex was assessed by recording the activities and plotting the receptive fields of neurons at 2327 sites along 148 electrode penetrations made in 19 cats. The results show that the transition zone contains a significant representation of the ipsilateral visual hemifield although not all elevations in the visual field represented to the same extent. The shape of the field region represented resembles an hour glass, for the region represented is narrowest on the 0-deg horizontal meridian and increasingly wider at progressively more positive and negative elevations. When receptive-field centers are considered, the extent of the representation reaches to -2.5 deg on the 0-deg horizontal meridian and to 10 or more degrees towards the field periphery. When receptive-field areas are considered, the representation at the 0-deg horizontal meridian extends to -3.6 deg and to beyond 20 deg at other elevations. In contrast, the visual-field representations in flanking areas 17 and 18 are essentially limited to the contralateral hemifield. The presence of a distinct representation of part of the ipsilateral hemifield in the transition zone suggests that the zone may have connections distinctly different from those of the adjacent areas. The observations bear on the problems of understanding the visual pathways in hypopigmented cats and binocular disparity mechanisms about the midline.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albus, K. (1975). A quantitative study of the projection area of the central and paracentral visual field in area 17 of the cat, I: Precision of the topography. Experimental Brain Research 24, 159179.CrossRefGoogle ScholarPubMed
Albus, K. (1987). A neuronal subsystem in the cat&s area 18 lacks retinotopy. Brain Research 410, 199203.CrossRefGoogle ScholarPubMed
Albus, K. & Beckman, R. (1980). Second and third visual areas of the cat: interindividual variability in retinotopic arrangement and cortical location. Journal of Physiology (London) 299, 247276.CrossRefGoogle ScholarPubMed
Antonini, A., Distefano, M., Minciacchi, D. & Tassinari, G. (1985). Interhemispheric influences on area 19 of the cat. Experimental Brain Research 59, 171184.CrossRefGoogle Scholar
Barlow, H.B., Blakemore, C. & Pettigrew, J.D. (1967). The neural mechanisms of binocular depth discrimination. Journal of Physiology (London) 193, 327342.CrossRefGoogle ScholarPubMed
Berlucchi, G. & Rizzolatti, G. (1968). Binocularly driven neurons in visual cortex of split-chiasm cats. Science 159, 308310.CrossRefGoogle ScholarPubMed
Birnbacher, D. & Albus, K. (1987). Divergence of single axons in afferent projections to the cat&s visual cortical areas 17, 18, and 19:a parametric study. Journal of Comparative Neurology 261, 534561.Google Scholar
Bishop, P.O., Kozaic, W. & Vakkur, G.J. (1962). Some quantitative aspects of the cat&s eye: axis and plane of reference, visual field coordinates, and optics. Journal of Physiology (London) 163, 466502.CrossRefGoogle ScholarPubMed
Blakemore, C. (1969). Binocular depth discrimination and the nasotemporal division. Journal of Physiology (London) 205, 471497.CrossRefGoogle ScholarPubMed
Blakemore, C., Dipo, Y., Pu, M., Wang, Y. & Xiao, Y. (1983). Possible functions of the interhemispheric connexions between visual cortical areas in the cat. Journal of Physiology (London) 337, 331349.CrossRefGoogle ScholarPubMed
Bullier, J., Kennedy, H. & Salinger, W. (1984). Bifurcation of sub-cortical afferents to visual areas 17, 18 and 19 in the cat cortex. Journal of Comparative Neurology 228, 309328.CrossRefGoogle Scholar
Choudhury, B.P. (1978). Retinotopic organization of the guinea pig&s visual cortex. Brain Research 144, 1929.CrossRefGoogle ScholarPubMed
Choudhury, B.P., Whitreridge, D. & Wilson, M.E. (1965). The function of callosal connections of the visual cortex. Quarterly Journal of Experimental Physiolgoy 50, 214219.CrossRefGoogle ScholarPubMed
Clarke, P.G.H. & Whitteridge, D. (1976). The cortical visual areas of the sheep. Journal of Physiology (London) 256, 497508.CrossRefGoogle ScholarPubMed
Clarke, P.G.H. & Whitteridge, D. (1977). Comparison of stereoscopic mechanisms in cortical visual areas V1 and V2 of the cat. Journal of Physiology (London) 272, 9293.Google ScholarPubMed
Cooper, M.L. & Blasdel, G.G. (1980). Regional variations in the representation of the visual field in the visual cortex of the Siamese cat. Journal of comparative Neurology 193, 237253.CrossRefGoogle ScholarPubMed
Cooper, M.L. & Pettigrew, J.D. (1979 a). The neurophysiological determination of the vertical horopter in the cat and the owl. Journal of Comparative Neurology 183, 126.Google Scholar
Cooper, M.L. & Pettigrew, J.D. (1979 b). The decussation of the retinothalamic pathway in the cat, with a note on the major meridians of the cat&s eye. Journal of Comparative Neurology 187, 285311.CrossRefGoogle ScholarPubMed
Cooper, M.L. & Pettigrew, J.D. (1979 c). The retinothalamic pathways in Siamese cats. Journal of Comparative Neurology 187, 313348.CrossRefGoogle ScholarPubMed
Creel, D., Hendrickson, A.E. & Leventhal, A.G. (1982). Retinal projections in tyrosinase-negative albino cats. Journal of Neuroscience 2, 907911.CrossRefGoogle ScholarPubMed
Doty, R.W. (1967). The misnomer “lateral gyrus” in lieu of “marginal gyrus” in the cat. Experimental Neurology 17, 263264.CrossRefGoogle Scholar
Drager, U. (1975). Receptive fields of single cells and topography in mouse visual cortex. Journal of Comparative Neurology 160, 269290.CrossRefGoogle ScholarPubMed
Dreher, B. (1986). Thalamocortical and corticocortical interconnections in the cat visual system: relation to the mechanisms of information processing. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 290314. Cambridge, London, New York, New Rochelle, Melbourne & Sydney: Cambridge University Press.Google Scholar
Dreher, B. & Cottee, L.J. (1975). Visual receptive-field properties of cells in area 18 of cat&s cerebral cortex before and after acute lesions in area 17. Journal of Neurophysiology 38, 735750.CrossRefGoogle ScholarPubMed
Dreher, B. & Sefton, A.J. (1979). Properties of neurons in cat&s dorsal lateral geniculate nucleus: a comparison between medial interlammar and laminated parts of the nucleus. Journal of Comparative Neurology 183, 4764.CrossRefGoogle ScholarPubMed
Ebner, F.F. & Myers, RE. (1965). Distribution of corpus callosum and anterior commissure in cat and racoon. Journal of Comparative Neurology 114, 353366.CrossRefGoogle Scholar
Enroth-Cugell, C. & Robson, J.G. (1966). The contrast sensitivity of retinal ganglion cells. Journal of Physiology (London) 187, 517552.CrossRefGoogle ScholarPubMed
Ferster, D. (1981). A comparison of binocular depth mechanisms in areas 17 and 18 of cat visual cortex. Journal of Physiology (London) 311, 623655.CrossRefGoogle ScholarPubMed
Fisken, R.A., Garey, L.J. & Powell, T.P.S. (1975). The intrinsic, association, and commissural connections of the visual cortex. Philosophical Transactions of the Royal Society B (London) 272, 487536.Google ScholarPubMed
Friedlander, M.J., Lin, C.-S., Stanford, L.R. & Sherman, S.M. (1981). Morphology of functionally identified neurons in the lateral geniculate nucleus of the cat. Journal of Neurophysiology 46, 80119.CrossRefGoogle ScholarPubMed
Fukuda, Y. & Stone, J. (1974). Retinal distribution and central projections of Y, X, and W cells in the cat&s retina. Journal of Neurophysiology 37, 749772.CrossRefGoogle Scholar
Gardner, J.C. & Cynader, M.S. (1987). Mechanisms for depth sensitivity along the vertical meridian of the visual field. Brain Research 413, 6074.CrossRefGoogle ScholarPubMed
Garey, L.J., Jones, E.G. & Powell, T.P.S. (1968). Interrelationships of striate and extrastriate cortex with the primary relay sites of the visual pathway. Journal of Neurology, Neurosurgery, and Psychiatry3l,135157.CrossRefGoogle ScholarPubMed
Guillery, R.W. & Kaas, J.H. (1971). A study of normal and congenitally abnormal retinogemculate projections in cats. Journal of Comparative Neurology 143, 73100.CrossRefGoogle ScholarPubMed
Guillery, R. W., Geisert, E.E., Polley, E.H. & Mason, C.A. (1980). An analysis of the retinal afferents to the cat&s medial interlaminar nucleus and its rostral thalamic extension, the “geniculate wing.” Journal of Comparative Neurology 194, 117142.CrossRefGoogle Scholar
Harvey, A.R. (1980). A physiological analysis of subcortical and cornmissural projections of areas 17 and 18 of the cat. Journal of Physiology (London) 302, 507534.CrossRefGoogle ScholarPubMed
Hornung, J.P. & Garey, L.J. (1980). A direct pathway from thalamus to visual callosal neurons in cat. Experimental Brain Research 38, 111113.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat&s striate cortex. Journal of Physiology (London) 148, 574591.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1962). Receptive fields, binocular interaction, and functional architecture in the cat&s visual cortex. Journal of Physiology (London) 160, 106154.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 229289.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1967). Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of Neurophysiology 30, 15611573.CrossRefGoogle ScholarPubMed
Hubel, D.R. & Wiesel, T.N. (1971). Aberrant visual projections in the Siamese cat. Journal of Physiology (London) 218, 3362.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1973). A re-examination of stereoscopic mechanisms in the cat. Journal of Physiology (London) 232, 2930.Google ScholarPubMed
Hughes, H.C. & Sprague, J.M. (1986). Cortical mechanisms for local and global analysis of visual space in the cat. Experimental Brain Research 61, 332354.Google ScholarPubMed
Humphrey, A.L., Sim, M., Uhlrich, D.J. & Sherman, S.M. (1985 a). Projection patterns of individual X- and Y-cell axons from the lateral geniculate nucleus to cortical area 17 in the cat. Journal of Comparative Neurology 233, 159189.CrossRefGoogle ScholarPubMed
Humphrey, A.L., Sur, M., Uhlrich, D.J. & Sherman, S.M. (1985 b). Termination patterns of individual X- and Y-cell axons in the visual cortex of the cat: projections to area 18, to the 17/18 border region, and to both areas 17 and 18. Journal of Comparative Neurology 233, 190211.CrossRefGoogle Scholar
Ilung, R.-B. & Wassle, H. (1981). The retinal projection to the thaIamus in the cat: a quantitative investigation and a comparison with the retinotectal pathway. Journal of Comparative Neurology 202, 265285.CrossRefGoogle Scholar
Innocenti, G.M. (1980). The primary visual pathway through the corpus callosum: Morphological and functional aspects in the cat. Archives Italienne Biologie 118, 114188.Google ScholarPubMed
Jebb, A.H. & Woolsey, T.A. (1977). A simple stain for myclin in frozen sections: a modification of Mahon&s method. Stain Technology 52, 315318.CrossRefGoogle Scholar
Joshua, D.E. & Bishop, P.O. (1970). Binocular single vision and depth discrimination. Receptive-field disparities for central and peripheral vision and the binocular interaction on peripheral single units in cat striate cortex. Experimental Brain Research 10, 389416.CrossRefGoogle ScholarPubMed
Kawamura, K. (1971). Variations of the cerebral sulci in the cat. Acta Anatomica (Basel) 80, 204221.CrossRefGoogle ScholarPubMed
Kawamura, S., Fukushima, N. & Hattori, S. (1979). Topographical origin and ganglion cell types of the retino-pulvinar projection in the cat. Brain Research 173, 419429.CrossRefGoogle ScholarPubMed
Kinston, W.J., Vada, M.A. & Bishop, P.O. (1969). Multiple projection of the visual field to the medial portion of the dorsal lateral geniculate nucleus and the adjacent nuclei of the thalamus of the cat. Journal of Comparative Neurology 136, 295316.CrossRefGoogle Scholar
Kirk, D.L., Levick, W.R. & Cleland, B.G. (1976 a). The crossed or uncrossed destination of axons of sluggish-concentric and non-Concentric cat retinal ganglion cells, with an overall synthesis of the visual field representation. Vision Research 16, 233236.CrossRefGoogle ScholarPubMed
Kirk, D.L., Levick, W.R., Cleland, B.G. & Wassle, H. (1976 b). Crossed and uncrossed representation of the visual field by brisk- sustained and brisk-transient cat retinal ganglion cells. Vision Research 16, 225231.CrossRefGoogle ScholarPubMed
Kratz, K.E., Webb, S.V. & Sherman, S.M. (1978). Studies of the cat&s medial interlaminar nucleus: a subdivision of the dorsal lateral geniculate nucleus. Journal of Comparative Neurology 181, 601614.CrossRefGoogle ScholarPubMed
Law, M.I., Zahs, K.R. & Stryker, M.P. (1988). Organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology 278, 157180.CrossRefGoogle ScholarPubMed
Lee, B.B., Albus, K., Heggelund, P., Hulme, M.J. & Creutzfeldt, O.D. (1977). The depth distribution of optimal stimulus orientations for neurones in cat area 17. Experimental Brain Research 27, 301314.Google ScholarPubMed
Lee, C., Malpeli, J.G., Schwark, H.D. & Weyand, T.G. (1984). Cat medial interlaminar nucleus: retinotopy, relation to tapetum, and implications for scotopic vision. Journal of Neurophysiology 52, 848869.CrossRefGoogle ScholarPubMed
Leicester, J. (1968). Projection of the visual vertical meridian to cerebral cortex of the cat. Journal of Neurophysiology 31, 371382.CrossRefGoogle ScholarPubMed
Lepore, F. & Guillemot, J.-P. (1982). Visual receptive-field properties of cells innervated through the corpus callosum in the cat. Experimental Brain Research 46, 413424.CrossRefGoogle ScholarPubMed
Leventhal, A.G. & Creel, D.J. (1985). Retinal projections and functional architecture of cortical areas 17 and 18 in the tyrosinase-negative albino cat. Journal of Neuroscience 5, 795807.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Keens, J. & Tork, I. (1980). The afferent ganglion cells and cortical projections of the retinal recipient zone (RRZ) of the cat&s pulvinar complex. Journal of Comparative Neurology 194, 535554.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Rodieck, R.W. & Dreher, B. (1985). Central projections of retinal ganglion cells. Journal of Comparative Neurology 237, 216226.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Vitek, D.J. & Creel, D.J. (1985). Abnormal visual pathways in normally pigmented cats that are heterozygous for albinism. Science 229, 13951397.CrossRefGoogle ScholarPubMed
Levick, W.R. (1977). Participation of brisk-transient ganglion cells in binocular vision - an hypothesis. Proceedings of the Australian Physiological and Pharmacological Society 8, 916.Google Scholar
Levick, W.R., Kirk, D.L. & Wagner, H.G. (1981). Neurophysiological tracing of a projection from temporal retina to contralateral visual cortex of the cat. Vision Research 21, 16771679.CrossRefGoogle ScholarPubMed
Lund, J.S., Henry, G.H., Macqueen, C.L. & Harvey, A.R. (1979). Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. Journal of Comparative Neurology 184, 599618.CrossRefGoogle ScholarPubMed
Mason, R. (1975). Cell properties of the medial interlaminar nucleus of the cat&s lateral geniculate nucleus in relation to the sustained/transient classification. Experimental Brain Research 22, 327329.CrossRefGoogle Scholar
Meyer, O. & Albus, K. (1981). Topography and cortical projections of morphologically identified neurons in the visual thalamus of the cat. Journal of Comparative Neurology 201, 353374.CrossRefGoogle ScholarPubMed
Murakami, D.Sesma, M.A. & Rowe, M.H. (1982). Characteristics of nasal and temporal retina in Siamese and normally pigmented cats: ganglion cell projections, axon trajectory, and laterality of projection. Brain Behavior and Evolution 21, 67113.CrossRefGoogle ScholarPubMed
Murphy, P.C. & Sillito, A.M. (1987). Continuity of orientation columns between superficial and deep laminae of cat visual cortex. Journal of Physiology (London) 381, 95110.CrossRefGoogle Scholar
Nikara, T., Bishop, P.O. & Pettigrew, J.D. (1968) Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Experimental Brain Research 6, 353372.CrossRefGoogle ScholarPubMed
Orban, J.L. (1941). The structure of area striata of the cat. Journal of Comparative Neurology 75, 131164.Google Scholar
Orban, G.A. (1984). Neuronal Operations in Visual Cortex. Berlin, Heidelberg, New York, & Tokyo: Springer-Verlag.CrossRefGoogle Scholar
Orban, G.A., Kennedy, H. & Maes, H. (1980). Functional changes across the 17/18 border in the cat. Experimental Brain Research 39, 177186.CrossRefGoogle ScholarPubMed
Otsuka, R. & Hassler, R. (1962). Uber Aufbau und Gliederung der corticalen Sehsphare bei der Katze. Archiv fur Psychiatrie und Zeitschrift fur die gesammeltete Neurologie 203, 212234.CrossRefGoogle Scholar
Papez, J.W. (1929). Comparative Neurology. New York: T.Y. Crowell, pp. 1016.Google Scholar
Payne, B.R. (1986). Role of callosal cells in the functional organization of cat striate cortex. In Two Hemispheres – One Brain: Functions of the Corpus Callosum, ed. Lepore, F., Ptito, M. & Jasper, H.H., pp. 231254. New York: Alan R. Liss.Google Scholar
Payne, B.R., Berman, N. & Murphy, E.H. (1981 a). Organization of direction preferences in cat visual cortex. Brain Research 211, 445450.CrossRefGoogle ScholarPubMed
Payne, B.R., Berman, N. & Murphy, E.H. (1981 b). A quantitative assessment of eye alignment in cats after corpus callosum transection. Experimental Brain Research 43, 371376.Google ScholarPubMed
Payne, B.R., Pearson, H.E. & Berman, N. (1984). Role of the corpus callosum in the functional organization of cat striate cortex. Journal of Neurophysiology 52, 570594.CrossRefGoogle ScholarPubMed
Payne, B.R. & Peters, A. (1989). Cytochrome-oxidase patches and Meynert cells in monkey visual cortex. Neuroscience 28, 353363.CrossRefGoogle ScholarPubMed
Payne, B.R. & Siwek, D.F. (1990). Receptive-field properties of neurons at the confluence of cerebral cortical areas 17, 18, 20a, and 20b in the cat. Visual Neuroscience 4, 475479.CrossRefGoogle Scholar
Pettigrew, J.D. (1986). The evolution of binocular vision. In Visual Neuroscience, ed. Pettigrew, J.D., Sanderson, K.J. & Levick, W.R., pp. 208222. Cambridge, London, New York, New Rochelle, Melbourne & Sydney: Cambridge University Press.Google Scholar
Pettigrew, J.D., Ramachandran, V.S. & Bravo, H. (1984). Some neural connections subserving binocular vision in ungulates. Brain Behavior and Evolution 24, 6593.CrossRefGoogle ScholarPubMed
Peetigrew, J.D., Cooper, M.L. & Blasdel, G.G. (1979). Improved use of tapetal reflection for eye-position monitoring. Investigative Ophthalmology and Visual Science 18, 490495.Google Scholar
Pettigrew, J.D. & Dreher, B. (1987). Parallel processing of binocular disparity in the cat&s retinogeniculocortical pathways. Proceedings of the Royal Society B (London) 232, 297321.Google ScholarPubMed
Raczkowski, D. & Rosenquist, A.C. (1983). Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. Journal of Neuroscience 3, 19121942.CrossRefGoogle ScholarPubMed
Raczicowski, D. & Sherman, S.M. (1985). Morphology and physiology of single neurons in the medial interlaminar nucleus of the cat&s lateral geniculate nucleus. Journal of Neuroscience 5, 27022718.CrossRefGoogle Scholar
Rao, V.M. (1979). Interhemispheric connections between primary visual areas in adult sheep and newborn lambs. Journal of Physiology (London) 296, 6566.Google Scholar
Robinson, R. (1977). Genetics for Cat Breeders, 2nd Edition. Oxford: Pergamon Press.Google Scholar
Rosenquist, A.C. (1985). Connections of visual cortical areas in the cat. In Cerebral Cortex, Vol. 3: Visual cortex, ed. Peters, A. & Jones, E.G., pp. 81117. New York & London: Plenum Press.Google Scholar
Rowe, M.H. & Dreher, B. (1982). Retinal W-cell projections to the medial interlaminar nucleus in the cat: implications for ganglion cell classification. Journal of Comparative Neurology 204, 117133.CrossRefGoogle Scholar
Saito, H.-A. (1983). Morphology of physiologically identified X-, Y-, and W-type retinal ganglion cells of the cat. Journal of Comparative Neurology 221, 279288.CrossRefGoogle Scholar
Sanderson, K.J. (1971). The projection of the visual field to the lateral geniculate and medial interlaminar nuclei in the cat. Journal of Comparative Neurology 143, 101118.CrossRefGoogle Scholar
Sanderson, K.J. & Sherman, S.M. (1971). Nasotemporal overlap in the visual field projected to the lateral geniculate nucleus in the cat. Journal of Neurophysiology 34, 453466.CrossRefGoogle Scholar
Sanides, D. (1978). The retinotopic distribution of visual callosal projections in the suprasylvian visual areas compared to the classical areas (17, 18, and 19) in the cat. Experimental Brain Research 33, 435443.CrossRefGoogle Scholar
Sanides, F. & Hoffmann, J. (1969). Cyto- and myeloarchitecture of the visual cortex of the cat and the surrounding integration cortices. Journal für Hirnforschung 1, 79104.Google Scholar
Segraves, M.A. & Rosenquist, A.C. (1982). The distribution of the cells of origin of callosal projections in cat visual cortex. Journal of Neuroscience 2, 10791089.CrossRefGoogle ScholarPubMed
Shatz, C.J. (1977 a). Comparison of visual pathways in Boston and Midwestern Siamese cats. Journal of Comparative Neurology 171, 205228.CrossRefGoogle ScholarPubMed
Shatz, C.J. (1977 b). Abnormal interhemispheric connections in the visual system of Boston Siamese cats: a physiological study. Journal of Comparative Neurology 171, 229246.CrossRefGoogle Scholar
Shatz, C.J. (1977 c). Anatomy of interhemispheric connections in the visual system of Boston Siamese and ordinary cats. Journal of Comparative Neurology 173, 497518.CrossRefGoogle ScholarPubMed
Sprague, J.M., Levy, J., Diberardino, A. & Berlucchi, G. (1977). Visual cortical areas mediating form discrimination in the cat. Journal of Comparative Neurology 172, 441488.CrossRefGoogle ScholarPubMed
Stanford, L.R. (1987 a). W cells in the cat retina: correlated morphological and physiological evidence for two distinct classes. Journal of Neurophysiology 57, 218244.CrossRefGoogle ScholarPubMed
Stanford, L.R. (1987 b). X cells in the cat retina: relationships between the morphology and physiology of a class of cat retinal ganglion cells. Journal of Neurophysiology 58, 940964.CrossRefGoogle ScholarPubMed
Stone, J., C&ion, J.E. & Leicester, J. (1978). The nasotemporal di- vision of retina in the Siamese cat. Journal of Comparative Neurology 180, 783798.CrossRefGoogle Scholar
Stone, J. & Fukuda, Y. (1974). The nasotemporal division of the cat&s retina reexamined in terms of Y, X, and W cells. Journal of Comparative Neurology 155, 377394.CrossRefGoogle Scholar
Tiao, Y.-C. & Blakemore, C. (1976). Functional organization in the visual cortex of the golden hamster. Journal of Comparative Neurology 168, 459482.Google ScholarPubMed
Toyama, K., Matsunami, K., Ohno, T. & Tokashiki, S. (1974). An intracellular study of the neuronal organization in the visual cortex. Experimental Brain Research 21, 4566.CrossRefGoogle ScholarPubMed
Tretter, F., Cynader, M. & Singer, W. (1975). Cat parastriate cortex: a primary or secondary visual area? Journal of Neurophysiology 38, 10991113.CrossRefGoogle ScholarPubMed
Tusa, R.J., Palmer, L.A. & Rosenqust, A.C. (1978). The retinotopic organization of area 17 (striate cortex) in the cat. Journal of Comparative Neurology 177, 213236.CrossRefGoogle ScholarPubMed
Tusa, R.J., Rosenquist, A.C. & Palmer, L.A. (1979). Retinotopic organization of areas 18 and 19 in the cat. Journal of Comparative Neurology 185, 657678.CrossRefGoogle Scholar
Volchan, E., Bernardes, R.F., Rocha-miranda, C.E., Gleiser, L. & Gawryszewski, L.G. (1988). The ipsilateral field representation in the striate cortex of the opossum. Experimental Brain Research 73, 297304.CrossRefGoogle ScholarPubMed
Von, Der, Heydt R., Adorjani, Cs., Hanny, P. & Baumgartner, G. (1978). Disparity sensitivity and receptive-field incongruity of units in cat striate cortex. Experimental Brain Research 31, 523545.Google Scholar
Wagor, E., Mangini, N.J. & Pearlman, A.L. (1980). Retinotopic organization of striate and extrastriate visual cortex in the mouse. Journal of Comparative Neurology 193, 187202.CrossRefGoogle ScholarPubMed
Whitteridge, D. & Clarke, P.G.H. (1982). Ipsilateral visual field represented in the cat&s visual cortex. Neuroscience 7, 18551860.CrossRefGoogle ScholarPubMed
Wong-Riley, M. (1979). Changes in the visual system of monocularly sutured or enucleated cats demonstrable with cytochrome-oxidase histochemistry. Brain Research 171, 1128.CrossRefGoogle ScholarPubMed