Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-18T17:20:54.216Z Has data issue: false hasContentIssue false

Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs

Published online by Cambridge University Press:  02 June 2009

Arne Valberg
Affiliation:
Institute of Physics, Section of Biophysics, Norwegian University for Science and Technology, Trondheim, Norway
Inger Rudvin
Affiliation:
Institute of Physics, Section of Biophysics, Norwegian University for Science and Technology, Trondheim, Norway

Abstract

We have measured transient visual evoked potentials (VEPs) to low-contrast luminance stimuli favoring responses of magnocellular pathway cells and to low-contrast red-green stimuli favoring parvocellular cells. Stimuli were square-wave alternating, 3-deg homogeneous disks. Low-contrast stimuli modulated in luminance elicited relatively simple responses. For some observers, a negativity was present that saturated at low contrast. This may be the signature of inputs from magnocellular channels to the visual cortex. The slope of the contrast—response curve for low-contrast stimuli was about the same for all subjects. For medium contrasts, these contrast—response curves displayed an abrupt increase of slope. The shallower slope may reflect the responsivity of magnocellular-pathway inputs to the cortex, whereas the steeper slope may be caused by additional parvocellular activation.

Contrast-response curves for the most sensitive waveforms of the isoluminant green—red modulation also showed two branches, although not as clearly as for luminance. This may indicate parvocellular-mediated activity for small chromatic differences, and a combination of parvocellular and magnocellular inputs for larger contrasts. Curves of time-to-peak response as a function of contrast often changed their monotonous behavior near the kink of the corresponding contrast—response curve, thus supporting the notion of a contribution from several mechanisms to the main waveforms.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Berninger, T.A., Arden, G.B., Hogg, C.R. & Frumkes, T. (1989). Separable evoked retinal and cortical potentials from each major pathway: Preliminary results. British Journal of Ophthalmology 73, 502511.Google Scholar
Bobak, P., Bodis-Wollner, L., Harnois, C. & Thornton, J. (1984). VEPs in human reveal high and low spatial contrast mechanisms. Investigative Ophthalmology and Visual Science 25, 980983.Google Scholar
Buchner, H., Weyen, U., Frackowiak, R.S., Romaya, J. & Zeki, S. (1994). The timing of visual evoked potential activity in human area V4. Proceedings of the Royal Society (London) 257, 99104.Google Scholar
Campbell, F.W. & Maffei, L. (1970). Electrophysiological evidence for the existence of orientation and size detectors in the human visual system. Journal of Physiology 207, 635652.Google Scholar
Campbell, F.W. & Kulikowski, J.J. (1972). The visual evoked potential as a function of contrast of a grating pattern. Journal of Physiology 222, 345356.CrossRefGoogle ScholarPubMed
Fiorentini, A., Burr, D.C. & Morrone, C.M. (1991). Temporal characteristics of colour vision: VHP and psychophysical measurements. In From Pigments to Perception, ed. Valberg, A. & Lee, B.B., pp. 139149. New York: Plenum.CrossRefGoogle Scholar
Givre, S.J., Schroeder, C.E. & Arezzo, J.C. (1994). Contribution of extrastriate area V4 to the surface-recorded flash VEP in the awake macaque. Vision Research 34, 415438.CrossRefGoogle Scholar
Grünert, U., Greferath, U., Boycott, B.B. & Wässle, H. (1993). Parasol (Pa) ganglion-cells of the primate fovea: Immunocytochemical staining with antibodies against GABAA-receptors. Vision Research 33, 114.Google Scholar
Hicks, T.P., Lee, B.B. & Vidyasagar, T.R. (1983). The responses of cells in macaque lateral geniculate nucleus to sinusoidal gratings. Journal of Physiology 337, 183200.Google Scholar
Johnsen, S. (1993). Thesis in Physics. University of Oslo (in Norwegian).Google Scholar
Kaiser, P.K., Lee, B.B., Martin, P.R. & Valberg, A. (1990). The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 422, 153183.Google Scholar
Kaplan, E., Lee, B.B. & Shapley, R.M. (1990). New views of primate retinal function. In Progress in Retinal Research, ed. Osborne, N. & Chader, J., pp. 273336. Oxford: Pergamon Press.Google Scholar
Korth, M., Nguyen, N.X., Rix, R. & Sembritzki, O. (1993). Interactions of spectral, spatial, and temporal mechanisms in the human pattern visual evoked potential. Vision Research 33, 23972411.CrossRefGoogle ScholarPubMed
Kremers, J., Lee, B.B., Pokorny, J. & Smith, V.C. (1993). Responses of macaque ganglion cells and human observers to compound periodic waveforms. Vision Research 33, 19972011.Google Scholar
Kulikowski, J.J., Murray, I.J. & Parry, N.R.Y. (1989). Electrophysiological correlates of chromatic-opponent and achromatic stimulation in man. In Color Vision Deficiencies IX, ed. Verriest, G. & Drum, B., pp. 145152. Dordrecht: Kluwer.Google Scholar
Kulikowski, J.J., Murray, I.J. & Russell, M.H.A. (1991). Effect of stimulus size on chromatic and achromatic VEPs. In Colour Vision Deficiencies X, ed. Drum, B., Moreland, J.D. & Serra, A., pp. 5156. Dordrecht: Kluwer.CrossRefGoogle Scholar
Kulikowski, J.J. (1991). On the nature of visual evoked potentials, unit responses and psychophysics. In From Pigment to Perception, ed. Valberg, A. & Lee, B.B., pp. 197209. NATO ASI Series, New York: Plenum.CrossRefGoogle Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1988). The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina. Journal of Physiology 404, 323347.CrossRefGoogle ScholarPubMed
Lee, B.B., Martin, P.R. & Valberg, A. (1989 a). Sensitivity of macaque ganglion cells to luminance and chromatic flicker. Journal of Physiology 414, 223243.Google Scholar
Lee, B.B., Martin, P.R. & Valberg, A. (1989 b). Nonlinear summation of M- and L-cone inputs to phasic retinal ganglion cells of the macaque. Journal of Neuroscience 9, 14331442.Google Scholar
Lee, B.B., Pokorny, J., Smith, V.C., Martin, P.R. & Valberg, A. (1990). Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers. Journal of the Optical Society of America 7, 22232236.Google Scholar
Lømo, M. (1989). Thesis in Physics. University of Oslo (in Norwegian).Google Scholar
Lueck, C.J., Zeki, S., Friston, K.J., Deiber, M.-P., Cope, P., Cunningham, V.J., Lammertsma, A.A., Kennard, C. & Frackowiak, R.S.J. (1989). The colour centre in the cerebral cortex of man. Nature 340, 386389.CrossRefGoogle ScholarPubMed
Murray, I.J., Parry, N.R.A., Carden, D. & Kulikowski, J.J. (1987). Human visual evoked potentials to chromatic and achromatic gratings. Clinical Vision Sciences 1, 231244.Google Scholar
Nakayama, K. & Mackeben, M. (1982). Steady state visual evoked potentials in the alert primate. Vision Research 22, 12611271.Google Scholar
Paulus, W.M., Hoemberg, V., Cunningham, K., Halliday, A.M. & Rohde, N. (1984). Colour and brightness components of foveal visual evoked potentials in man. Electroencephalography and Clinical Neurophysiology 58, 107119.Google Scholar
Plendl, H., Paulus, W., Roberts, I.G., Botzel, K., Towell, A., Pitman, J.R., Scherg, M. & Halliday, A.M. (1993). The time course and location of cerebral evoked activity associated with the processing of colour stimuli in man. Neuroscience Letters 150, 912.Google Scholar
Rabin, J., Switkes, E., Crognale, M., Schneck, M.E. & Adams, A.J. (1994). Visual evoked potentials in three-dimensional color space: Correlates of spatio-chromatic processing. Vision Research 34, 26572671.Google Scholar
Regan, D. (1973). Evoked potentials specific to spatial patterns of luminance and colour. Vision Research 13, 23812402.Google Scholar
Regan, D. (1989). Human Brain Electrophysiology. New York: Elsevier.Google Scholar
Regan, D. & Lee, B.B. (1993). A comparison of the 40-Hz response in man, and the properties of macaque ganglion cells. Visual Neumscience 10, 439445.Google Scholar
Rudvin, I. (1995). Thesis in Biophysics. University of Oslo (in English).Google Scholar
Schiller, P.H. & Colby, C.L. (1983). The responses of single cells in the lateral geniculate nucleus of the rhesus monkey to color and luminance contrast. Vision Research 23, 16311641.Google Scholar
Seim, T. (1995). VEP responses to achromatic and chromatic stimuli in sharp and blurred vision. Joint European Research Meetings in Ophthalmology and Vision. Montpellier, France.Google Scholar
Shapley, R.M., Kaplan, E., & Soodak, R. (1981). Spatial summation and contrast sensitivity of X and Y cells in the lateral geniculate nucleus of the macaque. Nature 292, 543545.Google Scholar
Silveira, L.C.L. & Perry, V.H. (1991). The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina. Neuroscience 40, 217237.CrossRefGoogle ScholarPubMed
Smith, V.C. & Pokorny, J. (1975). Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Research 15, 161171.Google Scholar
Tootell, R.B.H., Hamilton, S.L. & Switkes, E. (1988). Functional anatomy of macaque striate cortex. IV. Contrast and magno/parvo streams. Journal of Neuroscience 8, 15941609.Google Scholar
Valberg, A., Lee, B.B. & Tigwell, D.A. (1986). Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus. Vision Research 26, 10611064.CrossRefGoogle ScholarPubMed
Valberg, A., Lee, B.B. & Tryti, J. (1987). Simulation of responses of spectrally opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli. Vision Research 27, 867882.CrossRefGoogle ScholarPubMed
Valberg, A. & Lee, B.B. (1989). Detection and discrimination of colour, a comparison of physiological and psychophysical data. Physica Scripta 39, 178186.CrossRefGoogle Scholar
Valberg, A., Lee, B.B., Kaiser, P. & Kremers, J. (1992). Responses of macaque ganglion cells to movement of chromatic borders. Journal of Physiology 458, 579602.Google Scholar
Valberg, A. & Lee, B.B. (1992). Main cell systems in primate visual pathways. Current Opinion in Ophthalmology 3, 813823.Google Scholar
Valberg, A. & Rudvin, I. (1995). Possible magnocellular and parvocellular pathway activities in transient VEPs. Investigative Ophthalmology and Visual Science (Suppl.) 36, S690.Google Scholar
Vassilev, A., Stomonyakov, V. & Manahilov, V. (1994). Spatial-frequency specific contrast gain and flicker masking of human transient VEP. Vision Research 34, 863872.Google Scholar