Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-18T17:03:53.643Z Has data issue: false hasContentIssue false

Overrepresentation of the central visual field in the superior colliculus of the pigmented and albino ferret

Published online by Cambridge University Press:  02 June 2009

C. Quevedo
Affiliation:
Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
K.-P. Hoffmann
Affiliation:
Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany
R. Husemann
Affiliation:
Institut für Neuroinformatik, Ruhr-Universität Bochum, 44780 Bochum, Germany
C. Distler
Affiliation:
Allgemeine Zoologie und Neurobiologie, Ruhr-Universität Bochum, 44780 Bochum, Germany

Abstract

We have examined the retinotopy in the superior colliculus of pigmented and albino ferrets using both anatomical and electrophysiological methods. While the distribution of contralaterally projecting retinotectal ganglion cells is characterized by the presence of an area centralis superimposed on a visual streak in both strains, the ipsilateral projection from temporal hemiretina is strongly reduced in albinos. In spite of the significantly altered retinotectal projection pattern, the collicular visual field map in the albino ferret reveals the same characteristics as in the pigmented animal with a strongly enlarged representation of the center of visual space. An areal comparison between retinotectal ganglion cell distribution and collicular areal magnification shows that the increase in areal magnification factor between the periphery and the representation of the central visual hemifield exceeds the corresponding increase in retinal ganglion cell density between peripheral retina and area centralis by a factor of three in pigmented and a factor of four in albino ferrets. The areal magnification factor of the representation of the retinal visual streak does not exceed the increase in retinotectal ganglion cell density. Thus, our results suggest that the representation of visual space in the superior colliculus of albino and pigmented ferrets does not simply follow the retinotectal ganglion cell density, but that there is an enhanced representation of the frontal central visual field. The possibility is discussed that the collicular visual field map may be determined either by both retinotectal and corticotectal projections or by the colliculus' intrinsic structure.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azzopardi, P. & Cowey, A. (1993). Preferential representation of the fovea in the primary visual cortex. Nature 361, 719720.CrossRefGoogle ScholarPubMed
Berman, N. & Cynader, M. (1972). Comparison of receptive-field organization of the superior colliculus in Siamese and normal cats. Journal of Physiology 224, 363389.CrossRefGoogle ScholarPubMed
Berson, D.M. & Stein, J.J. (1995). Retinotopic organization of the superior colliculus in relation to the retinal distribution of afferent ganglion cells. Visual Neuroscience 12, 671686.CrossRefGoogle Scholar
Berson, D.M., Lu, J. & Stein, J.J. (1990). Topographic variations in W-cell input to cat superior colliculus. Experimental Brain Research 79, 459466.CrossRefGoogle ScholarPubMed
Creel, D., Hendrickson, A.E. & Leventhal, A.G. (1982). Retinal projections in tyrosinase-negative albino cats. Journal of Neuroscience 2, 907911.CrossRefGoogle ScholarPubMed
Feldon, S., Feldon, P. & Kruger, L. (1970). Topography of the retinal projection upon the superior colliculus of the cat. Vision Research 10, 135143.CrossRefGoogle ScholarPubMed
Gayer, N.S., Horsburgh, G.M. & Dreher, B. (1989). Developmental changes in the pattern of retinal projections in pigmented and albino rabbits. Developmental Brain Research 50, 3354.CrossRefGoogle ScholarPubMed
Guillery, R.W. (1969). An abnormal retinogeniculate projection in Siamese cats. Brain Research 14, 739741.CrossRefGoogle ScholarPubMed
Guillery, R.W. (1971). An abnormal retinogeniculate projection in the albino ferret (Mustela putorius furo). Brain Research 33, 482485.CrossRefGoogle Scholar
Henderson, Z. (1985). Distribution of ganglion cells in the retina of adult pigmented ferret. Brain Research 358, 221228.CrossRefGoogle ScholarPubMed
Hoffmann, K.-P. (1970). Retinotopische Beziehungen und Struktur rezeptiver Felder im Tectum opticum und Praetectum der Katze. Zeitschrift für Vergleichende Physiologie 67, 2657.CrossRefGoogle Scholar
Hoffmann, K.-P. (1973). Conduction velocity in pathways from retina to superior colliculus in the cat: A correlation with receptive field properties. Journal of Neurophysiology 36, 409424.CrossRefGoogle Scholar
Horn, A.K.E. & Hoffmann, K.-P. (1987). Combined GABA-immunocytochemistry and TMB-HRP histochemistry of pretectal nuclei projecting to the inferior olive in rats, cats and monkeys. Brain Research 409, 133138.CrossRefGoogle Scholar
Hubel, D.H. & Wiesel, T.N. (1971). Aberrant visual projection in the Siamese cat. Journal of Physiology 218, 3362.CrossRefGoogle ScholarPubMed
Huerta, M.F. & Harting, J.K. (1984 a). The mammalian superior colliculus: Studies of its morphology and connections. In Comparative Neurology of the Optic Tectum, ed. Vanegas, H., pp. 687773. New York: Plenum Publishing.CrossRefGoogle Scholar
Huerta, M.F. & Harting, J.K. (1984 b). Connectional organization of the superior colliculus. Trends in Neurosciences 7, 286289.CrossRefGoogle Scholar
Hughes, A. (1971). Topographical relationships between the anatomy and physiology of the rabbit visual system. Documenta Ophthalmologica 30, 33159.CrossRefGoogle ScholarPubMed
Hughes, A. (1977). The topography of vision in mammals of contrasting life style: Comparative optics and retinal organisation. In Handbook of Sensory Physiology VII/5; The Visual Systems in Vertebrates, ed. Crescitelli, F., pp. 613756. Berlin, Germany: Springer.CrossRefGoogle Scholar
Lane, R.H., Kaas, J.H. & Allman, J.M. (1974). Visuotopic organization of the superior colliculus in normal and Siamese cats. Brain Research 70, 413430.CrossRefGoogle ScholarPubMed
Law, M.I., Zahs, K.R. & Stryker, M.P. (1988). Organization of primary visual cortex (area 17) in the ferret. Journal of Comparative Neurology 278, 157180.CrossRefGoogle ScholarPubMed
Linden, R. & Perry, V.H. (1983). Massive retinotectal projection in rats. Brain Research 272, 145149.CrossRefGoogle ScholarPubMed
Lund, R.D. (1965). Uncrossed visual pathways of hooded albino rats. Science 149, 15061507.CrossRefGoogle ScholarPubMed
Mark, R.F., James, A.C. & Sheng, X.-M. (1993). Geometry of the representation of the visual field on the superior colliculus of the wallaby (Macropus eugenii). I. Normal projection. Journal of Comparative Neurology 330, 303314.CrossRefGoogle ScholarPubMed
McIlwain, J.T. (1983). Representation of the visual streak in maps of the cat's superior colliculus: Influence of the mapping variable. Vision Research 23, 507516.CrossRefGoogle ScholarPubMed
McIlwain, J.T. & Lufkin, R.B. (1976). Distribution of direct Y-cell inputs to the cat's superior colliculus: Are there spatial gradients? Brain Research 103, 133138.CrossRefGoogle Scholar
Mesulam, M.-M. (1978). Tetramethylbenzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction-product with superior sensitivity for visualizing neural afferents and efferents. Journal of Histochemistry and Cytochemistry 26, 106117.CrossRefGoogle Scholar
Mesulam, M.-M. (1982). Principles of horseradish peroxidase neurohistochemistry and their applications for tracing neural pathways – axonal transport, enzyme histochemistry and light-microscopic analysis. In Tracing Neural Connections with Horseradish Peroxidase, ed. Mesulam, M.-M., pp. 3151. Chichester, England: John Wiley & Sons.Google Scholar
Mize, R.R. (1983). Patterns of convergence and divergence of retinal and cortical synaptic terminals in the cat superior colliculus. Experimental Brain Research 51, 8896.CrossRefGoogle ScholarPubMed
Morgan, J.E., Henderson, Z. & Thompson, I.D. (1987). Retinal decussation patterns in pigmented and albino ferrets. Neuroscience 20, 519535.CrossRefGoogle ScholarPubMed
Muñoz, D.P. & Guitton, D. (1991). Control of orienting gaze shifts by the tectoreticulospinal system in the head free cat. II. Sustained discharges during motor preparation and fixation. Journal of Neurophysiology 66, 16241641.CrossRefGoogle Scholar
Muñoz, D.P. & Wurtz, R.H. (1992). Role of the rostral superior colliculus in active visual fixation and execution of express saccades. Journal of Neurophysiology 67, 10001002.CrossRefGoogle ScholarPubMed
Perry, V.H. & Cowey, A. (1984). Retinal ganglion cells that project to the superior colliculus and pretectum in the macaque monkey. Neuroscience 12, 11251137.CrossRefGoogle Scholar
Perry, V.H. & Cowey, A. (1985). The ganglion cell and cone distributions in the monkey's retina: Implications for central magnification factors. Vision Research 25, 17951810.CrossRefGoogle ScholarPubMed
Robinson, D.L. & McClurkin, J.W. (1989). The visual superior colliculus and pulvinar. In The Neurobiology of Saccadic Eye Movements, ed. Wurtz, R.H. & Goldberg, M.E., pp. 337360. New York: Elsevier.Google Scholar
Rosa, M.G.P. & Schmid, L.M. (1995). Magnification factors, receptive field images and point image size in the superior colliculus of flying foxes: Comparison with the primary visual cortex: Experimental Brain Research 102, 551556.CrossRefGoogle ScholarPubMed
Schein, S.J. & de Monasterio, F.M. (1987). Mapping of retinal and geniculate neurons onto striate cortex of macaque. Journal of Neuroscience 7, 9961009.CrossRefGoogle ScholarPubMed
Silveira, L.C.L., Perry, V.H. & Yamada, E.S. (1993). The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus. Visual Neuroscience 10, 887897.CrossRefGoogle ScholarPubMed
Stone, J., Campion, J.E. & Leicester, J. (1978). Retinal abnormalities in the Siamese cat. Journal of Comparative Neurology 180, 773782.CrossRefGoogle ScholarPubMed
van Essen, D.C., Newsome, W.T. & Maunsell, H.R. (1984). The visual field representation in striate cortex of the macaque monkey: Asymmetries, anisotropies and individual variability. Vision Research 24, 429448.CrossRefGoogle ScholarPubMed
Vitek, D.J., Schall, J.D. & Leventhal, A.G. (1985). Morphology, central projections, and dendritic field orientation of retinal ganglion cells in the ferret. Journal of Comparative Neurology 241, 111.CrossRefGoogle ScholarPubMed
Wässle, H. & Illing, R.-B. (1980). The retinal projection to the superior colliculus in the cat: A quantitative study with HRP. Journal of Comparative Neurology 190, 333356.CrossRefGoogle Scholar
Wässle, H., Grünert, U., Röhrenbeck, J. & Boycott, B.B. (1990). Retinal ganglion cell density and cortical magnification factor in the primate. Vision Research 30, 18971911.CrossRefGoogle ScholarPubMed
Weber, J.T., Kaas, J.H. & Harting, J.K. (1978). Retinocollicular pathways in Siamese cat: An autoradiographic analysis. Brain Research 148, 189196.CrossRefGoogle Scholar
Wingate, R.J.T., Fitzgibbon, T. & Thompson, I.D. (1992). Lucifer yellow, retrograde tracers, and fractal analysis characterise adult ferret retinal ganglion cells. Journal of Comparative Neurology 323, 449474.CrossRefGoogle ScholarPubMed
Zhang, H.Y. & Hoffmann, K.-P. (1993). Retinal projections to the pretectum, accessory optic system and superior colliculus in pigmented and albino ferrets. European Journal of Neuroscience 5, 486500.CrossRefGoogle Scholar