Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-30T23:23:08.308Z Has data issue: false hasContentIssue false

Ocular dimensions and schematic eyes of freshwater and sea turtles

Published online by Cambridge University Press:  02 June 2009

D. P. M. Northmore
Affiliation:
Neuroscience Program, Department of Psychology, and School for Life Sciences, University of Delaware, Newark
A. M. Granda
Affiliation:
Neuroscience Program, Department of Psychology, and School for Life Sciences, University of Delaware, Newark

Abstract

Measurements were made of the ocular dimensions from living and frozen eyes of one species of freshwater turtle, Pseudemys scripta elegans, and of three species of marine turtles, Chelonia mydas, Dermochelys cariacea, and Eretmochelys imbricata. Estimates of refractive error by retinoscopy were also obtained with eyes in air and under water. The results suggest that unaccommodated eyes of all four species are approximately emmetropic in air but strongly hyperopic in water. Schematic eyes were calculated for each species in both air and water.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Beer, T. (1898). Die Accommodation des Auges bei den Reptilien. Pflügers Archiv für gesamte Physiologie 69, 507568.CrossRefGoogle Scholar
Bennett, A.G. & Francis, J.L. (1962). The eye as an optical system. In The Eye, Visual Optics and Optical Space Sense, Vol. 4, ed. Davson, H., pp. 101132. New York: Academic Press.Google Scholar
Carr, A. (1965). The navigation of the green turtle. Scientific American 212, 7986.CrossRefGoogle Scholar
Carr, A. & Ogren, L. (1960). The ecology and migrations of sea turtles, 4; the green turtle in the Caribbean sea. Bulletin of the American Museum of Natural History 121, 148.Google Scholar
Dudziak, J. (1955). Ostrość widzenia u zolwia blotnego (Emys orbicularis L.) przy patrzeniu w środowisku powietrznym i wodnym. Folia Biologica (Kraków) 3, 205228.Google Scholar
Duke-Elder, S. (1958). System of Ophthalomogy, Vol. 1. St. Louis, Missouri: C.V. Mosby Co.Google Scholar
Ehrenfeld, D.W & Carr, A. (1967). The role of vision in the sea-finding orientation of the green turtle (Chelonia mydas). Animal Behaviour 15, 2536.Google Scholar
Ehrenfbld, D.W. & Koch, A.L. (1967). Visual accommodation in the green sea turtle. Science 155, 827828.CrossRefGoogle Scholar
Fritzbero, W. (1912). Beiträge zur Kenntnis des Akkommodationsapparates bei Reptilien. Archiv für vergleichende Ophthalmologie 3, 292322.Google Scholar
Glickstein, M. & Millodot, M. (1970). Retinoscopy and eye size. Science 168, 605606.Google Scholar
Granda, A.M. & Dvorak, C.A. (1977). Vision in turtles. In The Visual System in Vertebrates – Handbook of Sensory Physiology, ed. Crescitelli, F., pp. 451495. New York: Springer-Verlag.CrossRefGoogle Scholar
Granda, A.M. & Haden, K.W. (1970). Retinal oil globule counts and distribution in two species of turtles: Pseudemys scripta elegans (Wied) and Chelonia mydas mydas (Linnaeus). Vision Research 10, 7984.CrossRefGoogle ScholarPubMed
Granda, A.M. & Sisson, D.F. (1989). Psychophysically derived visual mechanisms in turtle. I – Spectral Properties. Vision Research 29, 93105.CrossRefGoogle ScholarPubMed
Green, D.G., Powers, M.K. & Banks, M.S. (1980). Depth of focus, eye size and visual acuity. Vision Research 20, 827835.Google Scholar
Helmholtz, H. (1924). Handbook der Physiologischen Optik, 3rd edn., edited by A., Gullstrand. English translation by J.P.C. Southall. Optical Society of America.Google Scholar
Howland, H.C. & Sivak, J.G. (1984). Penguin vision in air and water. Vision Research 24, 19051909.CrossRefGoogle ScholarPubMed
Hughes, A. (1979). A schematic eye for the rat. Vision Research 19, 569588.Google Scholar
Keeton, W.T. (1979). Pigeon navigation. In Neural Mechanisms of Behavior in the Pigeon, ed. Granda, A.M. & Maxwell, J.H., chap. 2, pp. 520. New York: Plenum Press.Google Scholar
Koch, A.L., Carr, A. & Ehrenfeld, D.W. (1969). The problem of open-sea navigation: the migration of the green turtle to Ascension Island. Journal of Theoretical Biology 22, 163179.Google Scholar
Levy, B. & Sivak, J.G. (1980). Mechanisms of accommodation in the bird eye. Journal of Comparative Physiology 137, 267272.Google Scholar
Martin, G.R. (1983). Schematic eye models in vertebrates. In Progress in Sensory Physiology, Vol. 4, ed. Ottoson, D., pp. 4381. Berlin, New York: Springer-Verlag.CrossRefGoogle Scholar
Martin, G.R. & Young, S.R. (1984). The eye of the Humboldt penguin, Spheniscus humboldti: visual fields and schematic optics. Proceedings of the Royal Society B (London) 223, 197222.Google Scholar
Mrosovsky, N. & Shettleworth, S. (1968). The wavelength preference and brightness cues in the water finding behavior of sea turtles Behaviour 32, 211257.Google Scholar
Muntz, W.R.A. & Northmore, D.P.M. (1968). Background light, temperature and visual noise in the turtle. Vision Research 8, 787800.CrossRefGoogle ScholarPubMed
Northmore, D.P.M. & Granda, A.M. (1991). Refractive state, contrast sensitivity, and resolution in the freshwater turtlePseudemys scripta elegans, determined by tectal visual-evoked potentials. Visual Neuroscience, 7, 619625.CrossRefGoogle ScholarPubMed
Sisson, D.F. & Granda, A.M. (1989). Psychophysically derived visual mechanisms in turtle. II – spatial properties. Vision Research 29, 107114.Google Scholar
Sivak, J.G. (1988). Optics of amphibious eyes in vertebrates. In Sensory Biology of Aquatic Animals, ed. Fay, R.R., Popper, A.N. & Tavolga, W.N., pp. 467485. New York: Springer-Verlag.Google Scholar
Vakkur, G.J. & Bishop, P.O. (1963). The schematic eye in the cat. Vision Research 3, 357381.Google Scholar
Walls, G.L. (1942). The Vertebrate Eye and Its Adaptive Radiation. Bloomfield Hills, Michigan: The Cranbrook Institute of Science.Google Scholar