Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T05:55:32.107Z Has data issue: false hasContentIssue false

The multifocal pattern electroretinogram (mfPERG) and cone-isolating stimuli

Published online by Cambridge University Press:  20 December 2007

HANA LANGROVÁ
Affiliation:
University Eye Hospital, Hradec Králové, Czech Republic Center for Ophthalmology, University of Tübingen, Germany
HERBERT JÄGLE
Affiliation:
Center for Ophthalmology, University of Tübingen, Germany
EBERHART ZRENNER
Affiliation:
Center for Ophthalmology, University of Tübingen, Germany
ANNE KURTENBACH
Affiliation:
Center for Ophthalmology, University of Tübingen, Germany

Abstract

The number of L cones in the retina normally exceeds that of the M cones. Because normal color vision does not depend on the ratio of L- and M-photoreceptors, their signals must undergo an alteration in gain before being analyzed in the cortex. Previous studies have shown that this gain must take place before the cortex, but after the bipolar/amacrine cell layer of the retina. The aim of this study was to obtain topographical information about L- and M-cone activity at the ganglion cell layer using multifocal pattern electroretinography (mfPERG). A standard (black and white) stimulus was used, as well as stimuli modulating only the long wavelength-sensitive (L) or only the middle wavelength-sensitive (M) cones. The L:M ratio was calculated from the amplitude of the L-cone isolating mfPERG to that of the M-cone isolating mfPERG of 10 trichromats. Both the positive and negative components of the waveform were analyzed. Additional recordings of single cone modulated mfERGs were obtained from nine of the 10 subjects. We also recorded from one protanope and one deuteranope. The L:M cone amplitude ratios for both deflections of the mfPERG in the trichromats were around unity (medians 1.18 and 1.16, respectively) for the central 8° of retina. In the peripheral retina between 12.8° and 26°, this ratio increased to 1.42 for the positive component, and 1.37 for the negative component. The median L:M cone amplitude ratios for the mfPERG were higher and ranged between 1.00–2.78 in the central 8° and 1.29–2.78 in the periphery. The results indicate that a major gain adjustment of the retinal signals takes place at the ganglion cell level, and that the ratio is higher at eccentric locations than in the central retinal area.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albrecht, J., Jagle, H., Hood, D.C. & Sharpe, L.T. (2002). The multifocal electroretinogram (mfERG) and cone isolating stimuli: Variation in L- and M-cone driven signals across the retina. Journal of Vision 2, 543558.CrossRefGoogle Scholar
Berninger, T. & Schuurmans, R.P. (1985). Spatial tuning of the pattern ERG across temporal frequency. Documenta Ophthalmologica 61, 1725.CrossRefGoogle Scholar
Carroll, J., Neitz, J. & Neitz, M. (2002). Estimates of L:M cone ratio from ERG flicker photometry and genetics. Journal of Vision 2, 531542.CrossRefGoogle Scholar
Curcio, C.A. & Allen, K.A. (1990). Topography of ganglion cells in human retina. Journal of Comparative Neurology 300, 525.CrossRefGoogle Scholar
Dacey, D.M., Lee, B.B., Stafford, D.K., Pokorny, J. & Smith, V.C. (1996). Horizontal cells of the primate retina: Cone specificity without spectral opponency. Science 271, 656659.CrossRefGoogle Scholar
Diller, L.C., Verweij, J., Williams, D.R. & Dacey, D.M. (1999). L and M cone inputs to peripheral parasol and midget ganglion cells in primate retina. Investigative Ophthalmology & Visual Science 40 (Suppl), 817.Google Scholar
Estévez, O. & Spekreijse, H. (1974). A spectral compensation method for determining the flicker characteristics of the human colour mechanisms. Vision Research 14, 823830.CrossRefGoogle Scholar
Hagstrom, S.A., Neitz, J. & Neitz, M. (1998). Variations in cone populations for red-green color vision examined by analysis of mRNA. Neuroreport 9, 19631967.CrossRefGoogle Scholar
Harrison, W.W., Viswanathan, S. & Malinovsky, V.E. (2006). Multifocal pattern electroretinogram: Cellular origins and clinical implications. Optometry & Visual Science 83, 473485.CrossRefGoogle Scholar
Hess, R.F. & Baker, C.L., Jr. (1984). Human pattern-evoked electroretinogram. Journal of Neurophysiology 51, 939951.CrossRefGoogle Scholar
Holder, G.E. (1997). The pattern electroretinogram in anterior visual pathway dysfunction and its relationship to the pattern visual evoked potential: A personal clinical review of 743 eyes. Eye 11, 924934.CrossRefGoogle Scholar
Hollander, H., Bisti, S., Maffei, L. & Hebel, R. (1984). Electroretinographic responses and retrograde changes of retinal morphology after intracranial optic nerve section. A quantitative analysis in the cat. Experimental Brain Research 55, 483493.Google Scholar
Hood, D.C., Yu, A.L., Zhang, X., Albrecht, J., Jagle, H. & Sharpe, L.T. (2002). The multifocal visual evoked potential and cone-isolating stimuli: Implications for L- to M-cone ratios and normalization. Journal of Vision 2, 178189.CrossRefGoogle Scholar
Hood, S.M., Mollon, J.D., Purves, L. & Jordan, G. (2006). Color discrimination in carriers of color deficiency. Vision Research 46, 28942900.CrossRefGoogle Scholar
Jacobs, G.H., Neitz, J. & Krogh, K. (1996). Electroretinogram flicker photometry and its applications. Journal of the Optical Society of America A 13, 641648.CrossRefGoogle Scholar
Kaplan, E., Lee, B.B. & Shapley, R.M. (1990). New views of primate retinal function. In Progress in Retinal Research, ed. Osborne, N.N. & Chandler, G.J., pp. 273336. Oxford: Pergamon.
Knau, H., Kremers, J., Schmidt, H.J., Wolf, S., Wissinger, B. & Sharpe, L.T. (2002). M-cone opsin gene number does not correlate with variation in L/M-cone sensitivity. Vision Research 42, 18881896.CrossRefGoogle Scholar
Korth, M., Rix, R. & Sembritzki, O. (1985). Spatial contrast transfer functions of the pattern-evoked electroretinogram. Investigative Ophthalmology & Visual Science 26, 303308.Google Scholar
Krauskopf, J. (2000). Relative number of long- and middle-wavelength-sensitive cones in the human fovea. Journal of the Optical Society of America A 17, 510516.CrossRefGoogle Scholar
Kremers, J. & Lee, B.B. (1992). Sensitivity of Macaque retinal ganglion cells and human observers to combined luminance and chromatic temporal modulation. Journal of the Optical Society of America A 9, 19.CrossRefGoogle Scholar
Kremers, J., Scholl, H.P., Knau, H., Berendschot, T.T., Usui, T. & Sharpe, L.T. (2000). L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry. Journal of the Optical Society of America A 17, 517526.CrossRefGoogle Scholar
Kremers, J., Usui, T., Scholl, H.P. & Sharpe, L.T. (1999). Cone signal contributions to electroretinograms [correction of electrograms] in dichromats and trichromats. Investigative Ophthalmology & Visual Science 40, 920930.Google Scholar
Kurtenbach, A., Heine, J. & Jagle, H. (2004). Multifocal electroretinogram in trichromat and dichromat observers under cone isolating conditions. Visual Neuroscience 21, 249255.CrossRefGoogle Scholar
Maffei, L. & Fiorentini, A. (1981). Electroretinographic responses to alternating gratings before and after section of the optic nerve. Science 211, 953955.CrossRefGoogle Scholar
Maffei, L., Fiorentini, A., Bisti, S. & Hollander, H. (1985). Pattern ERG in the monkey after section of the optic nerve. Experimental Brain Research 59, 423425.CrossRefGoogle Scholar
Miyahara, E., Pokorny, J., Smith, V.C., Baron, R. & Baron, E. (1998). Color vision in two observers with highly biased LWS/MWS cone ratios. Vision Research 38, 601612.CrossRefGoogle Scholar
Neitz, J., Carroll, J., Yamauchi, Y., Neitz, M. & Williams, D.R. (2002). Color perception is mediated by a plastic neural mechanism that is adjustable in adults. Neuron 35, 783792.CrossRefGoogle Scholar
Otake, S. & Cicerone, C.M. (2000). L and M cone relative numerosity and red-green opponency from fovea to midperiphery in the human retina. Journal of the Optical Society of America A 17, 615627.CrossRefGoogle Scholar
Pokorny, J., Smith, V. & Wesner, M.F. (1991). Variability in cone populations and implications. In From pigments to perception, ed. Valberg, A. & Lee, B.B., pp. 2334. New York: Plenum Press.CrossRef
Roorda, A. & Williams, D.R. (1999). The arrangement of the three cone classes in the living human eye. Nature 397, 520522.CrossRefGoogle Scholar
Schuurmans, R.P. & Berninger, T. (1985). Luminance and contrast responses recorded in man and cat. Documenta Ophthalmologica 59, 187197.CrossRefGoogle Scholar
Stiefelmeyer, S., Neubauer, A.S., Berninger, T., Arden, G.B. & Rudolph, G. (2004). The multifocal pattern electroretinogram in glaucoma. Vision Research 44, 103112.CrossRefGoogle Scholar
Stockman, A. & Sharpe, L.E. (1999). Cone spectral sensitivities and color matching. In Color Vision from Genes to Perception, ed. Gegenfurtner, K.R. & Sharpe, L.T., pp. 5185. Cambridge, UK: Cambridge University Press.
Stockman, A. & Sharpe, L.T. (2000). The spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype. Vision Research 40, 17111737.CrossRefGoogle Scholar
Thompson, D.A. & Drasdo, N. (1987). Computation of the luminance and pattern components of the bar pattern electroretinogram. Documenta Ophthalmologica 66, 233244.CrossRefGoogle Scholar
Viswanathan, S., Frishman, L.J. & Robson, J.G. (2000). The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity. Investigative Ophthalmology & Visual Science 41, 27972810.Google Scholar
Wesner, M.F., Pokorny, J., Shevell, S.K. & Smith, V.C. (1991). Foveal cone detection statistics in color-normals and dichromats. Vision Research 31, 10211037.CrossRefGoogle Scholar
Whitmore, A.V. & Bowmaker, J.K. (1995). Differences in the temporal properties of human longwave- and middlewave-sensitive cones. European Journal of Neuroscience 7, 14201423.CrossRefGoogle Scholar
Wu, S. & Sutter, E.E. (1995). A topographic study of oscillatory potentials in man. Visual Neuroscience 12, 10131025.CrossRefGoogle Scholar
Wyszecki, G. & Stiles, W.S. (1982). Colour Science. Concepts and Methods: Qualitative data and formulae. New York: Wiley.
Zapf, H.R. & Bach, M. (1999). The contrast characteristic of the pattern electroretinogram depends on temporal frequency. Graefe's Archives of Clinical and Experimental Ophthalmology 237, 9399.CrossRefGoogle Scholar
Zrenner, E. (1990). The physiological basis of the pattern electroretinogram. Progress in Retinal Research 9, 427464.CrossRefGoogle Scholar