Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-04T05:19:04.742Z Has data issue: false hasContentIssue false

Monocular mechanisms determine plaid motion coherence

Published online by Cambridge University Press:  02 June 2009

David Alais
Affiliation:
Department of Psychology, Vanderbilt University, Nashville
Maarten J. van der Smagt
Affiliation:
Department of Comparative Physiology, Helmholtz Instituut, Universiteit Utrecht, Padualaan 8, NL-3584 CH Utrecht, The Netherlands
Frans A. J. Verstraten
Affiliation:
Department of Psychology, Harvard University, Cambridge
W. A. van de Grind
Affiliation:
Department of Comparative Physiology, Helmholtz Instituut, Universiteit Utrecht, Padualaan 8, NL-3584 CH Utrecht, The Netherlands

Abstract

Although the neural location of the plaid motion coherence process is not precisely known, the middle temporal (MT) cortical area has been proposed as a likely candidate. This claim rests largely on the neurophysiological findings showing that in response to plaid stimuli, a subgroup of cells in area MT responds to the pattern direction, whereas cells in area V1 respond only to the directions of the component gratings. In Experiment 1, we report that the coherent motion of a plaid pattern can be completely abolished following adaptation to a grating which moves in the plaid direction and has the same spatial period as the plaid features (the so-called “blobs”). Interestingly, we find this phenomenon is monocular: monocular adaptation destroys plaid coherence in the exposed eye but leaves it unaffected in the other eye. Experiment 2 demonstrates that adaptation to a purely binocular (dichoptic) grating does not affect perceived plaid coherence. These data suggest several conclusions: (1) that the mechanism determining plaid coherence responds to the motion of plaid features, (2) that the coherence mechanism is monocular, and thus (3), that it is probably located at a relatively low level in the visual system and peripherally to the binocular mechanisms commonly presumed to underlie two-dimensional (2-D) motion perception. Experiment 3 examines the spatial tuning of the monocular coherence mechanism and our results suggest it is broadly tuned with a preference for lower spatial frequencies. In Experiment 4, we examine whether perceived plaid direction is determined by the motion of the grating components or the features. Our data strongly support a feature-based model.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E.H. (1984). Binocular disparity and the computation of two-dimensional motion. Journal of the Optical Society of America A1, 2352.Google Scholar
Adelson, E.H. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Alais, D.M., Burke, D.C. & Wenderoth, P.M. (1996 a). Further evidence for monocular determinants of perceived plaid direction. Vision Research 36, 12471253.CrossRefGoogle ScholarPubMed
Alais, D.M., Wenderoth, P.M. & Burke, D.C. (1996 b). The size and number of plaid blobs contribute to the direction perception of type II plaids. Vision Research (in press).CrossRefGoogle Scholar
Alais, D.M., van der Smagt, M.J., Verstraten, F.A.J. & van de Grind, W.A. (1995). The perceived direction of motion and motion aftereffects using textured gratings. Perception 24, 13831396.CrossRefGoogle ScholarPubMed
Alais, D.M., Wenderoth, P.M. & Burke, D.C. (1994). The contribution of 1-D motion mechanisms to the perceived direction of drifting plaids and their aftereffects. Vision Research 34, 18231834.CrossRefGoogle Scholar
Albright, T.D. (1984). Direction and orientation selectivity of neurons in visual area MT of the macaque. Journal of Neurophysiology 52, 11061130.CrossRefGoogle ScholarPubMed
Burke, D.C., Alais, D.M. & Wenderoth, P.M. (1994). A role for a low-level mechanism in determining plaid coherence. Vision Research 34, 31893196.CrossRefGoogle ScholarPubMed
Carney, T. & Shadlen, M.N. (1993). Dichoptic activation of the early motion system. Vision Research 33, 19771995.CrossRefGoogle ScholarPubMed
Derrington, A.M. & Badcock, D.R. (1992). Two-stage analysis of the motion of 2-dimensional patterns, what is the first stage? Vision Research 32, 691698.CrossRefGoogle ScholarPubMed
DeYoe, E.A. & Van Essen, D.C. (1988). Concurrent processing streams in monkey visual cortex. Trends in Neuroscience 11, 219226.CrossRefGoogle ScholarPubMed
Felleman, D.J. & Kaas, J.H. (1984). Receptive field properties of neurons in middle temporal visual area (MT) of owl monkey. Journal of Neurophysiology 52, 488513.CrossRefGoogle Scholar
Fennema, C.L. & Thompson, W.B. (1979). Velocity determination in scenes containing several moving images. Computer Graphics and Image Processing 9, 301315.CrossRefGoogle Scholar
Gordon, B. & Presson, J. (1977). The effects of alternating occlusion on receptive fields in cat superior colliculus. Journal of Neurophysiology 40, 14061414.CrossRefGoogle ScholarPubMed
Green, M. (1981). Psychophysical relationships among mechanisms sensitive to pattern, motion and flicker. Vision Research 21, 971983.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1977). Functional architecture of macaque monkey visual cortex. Proceedings of the Royal Society B (London) 198, 159.Google ScholarPubMed
Kim, J. & Wilson, H.R. (1993). Dependence of plaid motion contrast on component grating directions. Vision Research 33, 24792489.CrossRefGoogle ScholarPubMed
Kooi, F.L., De Valois, K.K., Switkes, E. & Grosof, D.H. (1992). Higher-order factors influencing the perception of sliding and coherence of a plaid. Perception 21, 583598.CrossRefGoogle ScholarPubMed
Krauskopf, J. & Farell, B. (1990). Influence of colour on the perception of coherent motion. Nature 348, 328331.CrossRefGoogle ScholarPubMed
Levinson, E. & Sekuler, R. (1975). The independence of channels in human vision selective for direction of movement. Journal of Physiology 250, 347366.CrossRefGoogle ScholarPubMed
Lorenceau, J. & Shiffrar, M. (1992). The influence of terminators on motion integration across space. Vision Research 32, 263273.CrossRefGoogle ScholarPubMed
Marrocco, R.T. & Li, R.H. (1977). Monkey superior colliculus: Properties of single cells and their afferent inputs. Journal of Neurophysiology 40, 844860.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Van Essen, D.C. (1983). Functional properties of neurons in the middle temporal visual area (MT) of the macaque monkey: I. Selectivity for stimulus direction, speed and orientation. Journal of Neurophysiology 49, 11271147.CrossRefGoogle ScholarPubMed
Movshon, J.A., Adelson, E.H., Gizzi, M.S. & Newsome, W.T. (1985). The analysis of moving visual patterns. In Pattern Recognition Mechanisms, ed. Chagass, C., Gattass, R. & Gross, C., pp. 117151. Rome: Vatican Press.CrossRefGoogle Scholar
Newsome, W.T. & Paré, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). Journal of Neuroscience 8, 22012211.CrossRefGoogle ScholarPubMed
Ramachandran, V.S. & Cavanagh, P. (1987). Motion capture anisotropy. Vision Research 27, 97106.CrossRefGoogle ScholarPubMed
Ramachandran, V.S. & Inada, V. (1985). Spatial phase and frequency in motion capture of random-dot patterns. Spatial Vision 1, 5767.Google ScholarPubMed
Rodiek, R.W. (1971). Central nervous system; afferent pathways. Annual Review of Physiology 33, 203240.CrossRefGoogle Scholar
Rodman, H.R. & Albright, T.D. (1989). Single unit analysis of patternmotion selective properties in the middle temporal visual area (MT). Experimental Brain Research 75, 5364.CrossRefGoogle ScholarPubMed
Rodman, H.R. & Albright, T.D. (1987). Coding of visual stimulus velocity in area MT of the macaque. Vision Research 27, 20352048.CrossRefGoogle ScholarPubMed
Sekuler, R., Pantle, A. & Levinson, E. (1978). Physiological basis of motion perception. In Handbook of Sensory Physiology: Vol. VIII, Perception, ed. Held, R., Leibowitz, H.W. & Teuber, H.L., pp. 6796. Berlin: Springer-Verlag.Google Scholar
Smith, A.T. (1985). Velocity coding: Evidence from perceived velocity shifts. Vision Research 25, 19691976.CrossRefGoogle ScholarPubMed
Smith, A.T. (1992). Coherence of plaids comprising components of disparate spatial frequencies. Vision Research 32, 393397.CrossRefGoogle ScholarPubMed
Stoner, G.R., Albright, T.D. & Ramachandran, V.S. (1990). Transparency and coherence in human motion perception. Nature 344, 153155.CrossRefGoogle ScholarPubMed
Trueswell, J.C. & Hayhoe, M.M. (1993). Surface segmentation and motion perception. Vision Research 33, 313328.CrossRefGoogle ScholarPubMed
Ullman, S. (1986). Artificial intelligence and the brain: Computational studies of the visual system. Annual Review of Neuroscience 9, 126.CrossRefGoogle ScholarPubMed
Ungerleider, L.G., Desimone, R., Galkin, T.W. & Mishkin, M. (1984). Subcortical projections of area MT in the macaque. Journal of Comparative Neurology 233, 368386.CrossRefGoogle Scholar
Vallortigara, G. & Bressan, P. (1991). Occlusion and the perception of coherent motion. Vision Research 31, 19671978.CrossRefGoogle ScholarPubMed
van den Berg, A.V. & Van de Grind, W.A. (1993). Do component motions recombine into a moving plaid percept? Experimental Brain Research 93, 312323.CrossRefGoogle ScholarPubMed
von Grünau, M. & Dubé, S. (1993). Ambiguous plaids: switching between coherence and transparency. Spatial Vision 7, 199211.CrossRefGoogle ScholarPubMed
Watson, A.B., Thompson, P.G., Murphy, B.J. & Nachmias, J. (1980). Summation and discrimination of gratings moving in opposite directions. Vision Research 20, 341347.CrossRefGoogle ScholarPubMed
Wenderoth, P.M., Alais, D.M., Burke, D.C. & van der Zwan, R. (1994). The role of blobs in determining the perception of drifting plaids and their motion aftereffects. Perception 23, 11631169.CrossRefGoogle ScholarPubMed
Wilson, H.R., Ferrera, V.P. & Yo, C. (1992). A psychophysically motivated model for two-dimensional motion perception. Visual Neuroscience 9, 7997.CrossRefGoogle ScholarPubMed
Wilson, H.R. & Kim, J. (1994). A model for motion coherence and transparency. Visual Neuroscience 11, 12051220.CrossRefGoogle Scholar
Yang, Y. & Blake, R. (1994). Board tuning for spatial frequency of neural mechanisms underlying the perception of motion coherence. Nature 371, 793796.CrossRefGoogle Scholar