Hostname: page-component-5f745c7db-nc56l Total loading time: 0 Render date: 2025-01-07T01:07:29.576Z Has data issue: true hasContentIssue false

Metacontrast, target recovery, and the magno- and parvocellular systems: A perspective

Published online by Cambridge University Press:  19 July 2007

BERNT C. SKOTTUN
Affiliation:
Skottun Research, Oakland, California
JOHN R. SKOYLES
Affiliation:
Centre for Mathematics and Physics in the Life Sciences and Experimental Biology (CoMPLEX), University College London, London, UK Centre for Philosophy of Natural and Social Science (CNPSS), London School of Economics, London, UK

Abstract

In metacontrast a masking stimulus reduces the visibility of an adjacent target stimulus. This effect has been interpreted in terms of magno-/parvocellular interactions. It has also been found that a second masking stimulus, which precedes the primary mask by about 90 ms reduces the masking effect. This reduction, which is termed “target recovery,” has been hypothesized to reflect parvocellular inhibition of the magnocellular system. However, this is problematic because the time course of this effect is much larger than would be expected from magno-/parvocellular interactions. For this and other reasons, it is difficult to understand metacontrast in terms of magno- and parvocellular mechanisms.

Type
Research Article
Copyright
2007 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ahmad, A. & Spear, P.D. (1993). Effects of aging on the size density, and number of rhesus monkey lateral geniculate neurons. Journal of Comparative Neurology 334, 631643.CrossRefGoogle Scholar
Alpern, M. (1953). Metacontrast. Journal of the Optical Society of America 29, 631646.CrossRefGoogle Scholar
Blakemore, C. & Vital-Durand, F. (1986). Organization and post-natal development of the monkey's lateral geniculate nucleus. Journal of Physiology 380, 453491.CrossRefGoogle Scholar
Breitmeyer, B.G. & Ganz, L. (1976). Implications of sustained and transient channels for theories of visual pattern masking, saccadic suppression, and information processing. Psychological Review 83, 136.Google Scholar
Breitmeyer, B.G., Kafaligonul, H., Ogmen, H., Mardon, L., Todd, S. & Ziegler, R. (2006). Meta- and paracontrast reveal differences between contour- and brightness-processing mechanisms. Vision Research 46, 26452658.CrossRefGoogle Scholar
Breitmeyer, B.G. & Williams, M.C. (1990). Effects of isoluminant-background color on metacontrast and stroboscopic motion: Interactions between sustained (P) and transient (M) channels. Vision Research 30, 10691075.CrossRefGoogle Scholar
Bridgeman, B. (2001). A comparison of two lateral inhibitory models of metacontrast. Journal of Mathematical Psychology 45, 780788.CrossRefGoogle Scholar
Dobkins, K.R. & Albright, T.D. (2003). Merging processing streams: Color cues for motion detection and interpretation. In The Visual Neurosciences, eds. Chalupa, L. & Werner, J., pp. 12171228. MA: MIT Press.
Edwards, V.T., Hogben, J.H., Clark, C.D. & Pratt, C. (1996). Effects of a red background on magnocellular functioning in average and specifically disabled readers. Vision Research 36, 10371045.CrossRefGoogle Scholar
Francis, G. (1997). Cortical dynamics of lateral inhibition: Metacontrast masking. Psychological Review 104, 572594.CrossRefGoogle Scholar
Francis, G. (2000). Quantitative theories of metacontrast masking. Psychological Review 107, 768785.CrossRefGoogle Scholar
Hendry, S.H. & Reid, R.C. (2000). The koniocellular pathway in primate vision. Annual Review of Neurosciences 23, 127153.CrossRefGoogle Scholar
Horton, J.C. (2006). Ocular integration in the human visual cortex. Canadian Journal of Ophthalmology 41, 584593.CrossRefGoogle Scholar
Kahneman, D. (1967). An onset-onset law for one case of apparent motion and metacontrast. Perception & Psychophysics 2, 577584.CrossRefGoogle Scholar
Kaplan, E. & Shapley, R.M. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Science USA 83, 27552757.CrossRefGoogle Scholar
Klistorner, A., Crewther, D.P. & Crewther, S.G. (1997). Separate magnocellular and parvocellular contributions from temporal analysis of the multifocal VEP. Vision Research 37, 21612169.CrossRefGoogle Scholar
Kolers, P.A. & Rosner, B.S. (1960). On visual masking (metacontrast): Dichoptic observation. American Journal of Psychology 73, 221.CrossRefGoogle Scholar
Lachica, E.A., Beck, P.D. & Casagrande, V.A. (1992). Parallel pathways in macaque monkey striate cortex: Anatomically defined columns in layer III. Proceedings of he National Academy of Sciences USA 89, 35663570.CrossRefGoogle Scholar
Lefton, L.A. (1973). Metacontrast: A review. Perception & Psychophysics 13, 161171.Google Scholar
Levitt, J.B., Schumer, R.A., Sherman, S.M., Spear, P.D. & Movshon, J.A. (2001). Visual response properties of neurons in the LGN of normally reared and visually deprived macaque monkeys. Journal of Neurophysiology 85, 21112129.CrossRefGoogle Scholar
Levitt, J.B., Yoshioka, T. & Lund, J.S. (1994). Intrinsic cortical connections in macaque visual area V2: Evidence for interaction between different functional streams. Journal of Comparative Neurology 342, 551570.CrossRefGoogle Scholar
Marrocco, T.R. (1976). Sustained and transient cells in monkey lateral geniculate nucleus: Conduction velocities and response properties. Journal of Neurophysiology 3, 225267.Google Scholar
Martin, K.A.C. (1992). Parallel pathways converge. Current Biology 2, 555557.CrossRefGoogle Scholar
Maunsell, J.H.R. & Gibson, J.R. (1992). Visual response latencies in striate cortex of the macaque monkey. Journal of Neurophysiology 68, 13321344.CrossRefGoogle Scholar
Maunsell, J.H.R., Ghose, G.M., Assad, J.A., McAdams, C.J., Boudreau, C.E. & Noerager, B.D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16, 114.Google Scholar
Merigan, W.H. & Maunsell, J.H.R. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience 16, 369402.Google Scholar
Murray, I.J. & Plainis, S. (2003). Contrast coding and magno/parvo segregation revealed in reaction times studies. Vision Research 43, 27072719.CrossRefGoogle Scholar
Nassi, J.J. & Callaway, E.M. (2006). Multiple circuits relaying primate parallel visual pathways to the Middle Temporal Area. Journal of Neuroscience 26, 1278912798.Google Scholar
Nassi, J.J., Lyon, D.C. & Callaway, E.M. (2006). The parvocellular LGN provides a robust disynapic input to the visual motion area MT. Neuron 50, 319327.CrossRefGoogle Scholar
Nealey, T.A. & Maunsell, J.H.R. (1994). Magnocellular and parvocellular contributions to the responses of neurons in macaque striate cortex. Journal of Neuroscience 14, 20692079.Google Scholar
Nowak, L.G. & Bullier, J. (1997). The timing of information transfer in the visual system. In Cerebral Cortex, eds. Rockland, K., Kaas, J. & Peters, A., pp. 204241. New York: Plenum.CrossRef
Ogmen, H., Breitmeyer, B.G., Todd, S. & Mardon, L. (2006). Target recovery in metacontrast: The effect of contrast. Vision Research 46, 47264734.CrossRefGoogle Scholar
Peters, A., Payne, B.R. & Budd, J. (1994). A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex 4, 215229.CrossRefGoogle Scholar
Purushothaman, G., Ogmen, H. & Bedell, H. (2000). Gamma range oscillations in backward-masking functions and their putative neural correlations. Psychological Review 107, 556577.Google Scholar
Sawatari, A. & Callaway, E.M. (1996). Convergence of magno- and parvocellular pathways in layer 4B of macaque primary visual cortex. Nature 380, 442446.CrossRefGoogle Scholar
Schmolesky, M.T., Wang, Y., Hanes, D.P., Thompson, K.G., Leutgeb, S., Shall, J.D. & Leventhal, A.G. (1998). Signal timing across the macaque visual system. Journal of Neurophysiology 79, 32723278.CrossRefGoogle Scholar
Schroeder, C.E., Tenke, C.E., Arezzo, J.C. & Vaughan, H.G. (1989). Timing and distribution of flash-evoked activity in the lateral geniculate nucleus in the alert monkey. Brain Research 477, 183195.CrossRefGoogle Scholar
Sclar, G., Maunsell, J.H. & Lennie, P. (1990). Coding of image contrast in central visual pathways of the macaque monkey. Vision Research 30, 110.Google Scholar
Shapley, R.M. & Hawken, M.J. (1999). Parallel retino-cortical channels and luminance. In Color Vision—from genes to perception, eds. Gegenfurtner, K.R. & Sharpe, L.T., pp. 221234. Cambridge, UK: Cambridge University Press.
Shapley, R. & Perry, V.H. (1986). Cat and monkey retinal ganglion cells and their visual functional roles. Trends in Neuroscience 9, 229235.CrossRefGoogle Scholar
Sincich, L.C. & Horton, J.C. (2002). Divided by cytochrome oxidase: A map of the projections from V1 to V2 in macaques. Science 295, 17341737.CrossRefGoogle Scholar
Sincich, L.C., Park, K.F., Wohlengemuth, M.J. & Horton, J.C. (2004). Bypassing V1: A direct geniculate input to area MT. Nature Neuroscience 7, 11231128.CrossRefGoogle Scholar
Skottun, B.C. (2001). On the use of metacontrast to assess magnocellular function in dyslexic readers. Perception & Psychophysics 63, 12711274.CrossRefGoogle Scholar
Skottun, B.C. (2004). On the use of red stimuli to isolate magnocellular responses in psychophysical experiments: A perspective. Visual Neuroscience 21, 6368.CrossRefGoogle Scholar
Skottun, B.C. & Skoyles, J. (2006a). Is coherent motion an appropriate test for magnocellular sensitivity? Brain and Cognition 61, 172180.Google Scholar
Skottun, B.C. & Skoyles, J. (2006b). A few remarks on relating reaction time to magnocellular activity. Journal of Clinical and Experimental Neuropsychology. In Press.Google Scholar
Valberg, A. & Rudvin, I. (1997). Possible contributions of magnocellular- and parvocellular-pathway cells to transient VEPs. Visual Neuroscience 14, 111.Google Scholar
Vidyasagar, T.R., Kulikowski, J.J., Lipnicki, D.M. & Dreher, B. (2002). Convergence of parvocellular and magnocellular information channels in the primary visual cortex of the macaque. European Journal of Neuroscience 16, 945956.CrossRefGoogle Scholar
Weisstein, N., Ozog, G. & Szoc, R. (1975). A comparison and elaboration of two models of metacontrast. Psychological Review 82, 325343.CrossRefGoogle Scholar
Werner, H. (1935). Studies on contour: I. Qualitative analysis. American Journal of Psychology 47, 4064.Google Scholar