Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T02:01:36.704Z Has data issue: false hasContentIssue false

Linking brain to behavior for the visual perception of figures and objects

Published online by Cambridge University Press:  23 August 2013

JEREMY D. FESI*
Affiliation:
Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
JANINE D. MENDOLA
Affiliation:
Department of Ophthalmology, McGill University, Montreal, Quebec, Canada
*
*Address correspondence to: Jeremy D. Fesi, Department of Ophthalmology, McGill University, Montreal, Quebec H3A 1A1, Canada. E-mail: [email protected]

Abstract

The dissociation of a figure from its background is an essential feat of visual perception, as it allows us to detect, recognize, and interact with shapes and objects in our environment. In order to understand how the human brain gives rise to the perception of figures, we here review experiments that explore the links between activity in visual cortex and performance of perceptual tasks related to figure perception. We organize our review according to a proposed model that attempts to contextualize figure processing within the more general framework of object processing in the brain. Overall, the current literature provides us with individual linking hypotheses as to cortical regions that are necessary for particular tasks related to figure perception. Attempts to reach a more complete understanding of how the brain instantiates figure and object perception, however, will have to consider the temporal interaction between the many regions involved, the details of which may vary widely across different tasks.

Type
Linking performance and neural mechanisms in adults
Copyright
Copyright © Cambridge University Press 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adelson, E. & Movshon, J.A. (1982). Phenomenal coherence of moving visual patterns. Nature 300, 523525.CrossRefGoogle ScholarPubMed
Albright, T.D. (1992). Form-cue invariant motion processing in primate visual cortex. Science 255, 11411143.CrossRefGoogle ScholarPubMed
Ales, J.M., Appelbaum, L.G., Cottereau, B.R. & Norcia, A.M. (2012). The time course of shape discrimination in the human brain. NeuroImage 67, 7788. doi: 10.1016/j.neuroimage.2012.10.044.CrossRefGoogle ScholarPubMed
Almeida, J., Mahon, B.Z., Nakayama, K. & Caramazza, A. (2008). Unconscious processing dissociates along categorical lines. Proceedings of the National Academy of Sciences of the United States of America 105, 1521415218. doi: 10.1073/pnas.0805867105.CrossRefGoogle ScholarPubMed
Altmann, C.F., Deubelius, A. & Kourtzi, Z. (2004). Shape saliency modulates contextual processing in the human lateral occipital complex. Journal of Cognitive Neuroscience 16, 794804. doi: 10.1162/089892904970825.CrossRefGoogle ScholarPubMed
Altschuler, T.S., Molholm, S., Russo, N.N., Snyder, A.C., Brandwein, A.B., Blanco, D. & Foxe, J.J. (2012). Early electrophysiological indices of illusory contour processing within the lateral occipital complex are virtually impervious to manipulations of illusion strength. NeuroImage 59, 40744085. doi: 10.1016/j.neuroimage.2011.10.051.CrossRefGoogle ScholarPubMed
Anzai, A., Chowdhury, S.A. & DeAngelis, G.C. (2011). Coding of stereoscopic depth information in visual areas V3 and V3A. The Journal of Neuroscience 31, 1027010282. doi: 10.1523/JNEUROSCI.5956-10.2011.CrossRefGoogle ScholarPubMed
Appelbaum, L.G., Ales, J.M. & Norcia, A.M. (2012). The time course of segmentation and cue-selectivity in the human visual cortex. PLoS One 7, e34205. doi: 10.1371/journal.pone.0034205.CrossRefGoogle ScholarPubMed
Appelbaum, L.G. & Norcia, A.M. (2009). Attentive and pre-attentive aspects of figural processing. Journal of Vision 9, 112. doi: 10.1167/9.11.18.Introduction.CrossRefGoogle ScholarPubMed
Bakar, A.A., Liu, L., Conci, M., Elliott, M.A. & Ioannides, A.A. (2008). Visual field and task influence illusory figure responses. Human Brain Mapping 29, 13131326. doi: 10.1002/hbm.20464.CrossRefGoogle ScholarPubMed
Ban, H., Preston, T.J., Meeson, A. & Welchman, A.E. (2012). The integration of motion and disparity cues to depth in dorsal visual cortex. Nature Neuroscience 15, 636643. doi: 10.1038/nn.3046.CrossRefGoogle ScholarPubMed
Bauer, R. & Heinze, S. (2002). Contour integration in striate cortex. Classic cell responses or cooperative selection? Experimental Brain Research 147, 145152. doi: 10.1007/s00221-002-1178-6.CrossRefGoogle ScholarPubMed
Baylis, G.C. & Driver, J. (2001). Shape-coding in IT cells generalizes over contrast and mirror reversal, but not figure-ground reversal. Nature Neuroscience 4, 937942. doi: 10.1038/nn0901-937.CrossRefGoogle Scholar
Beer, J., Blakemore, C., Previc, F.H. & Liotti, M. (2002). Areas of the human brain activated by ambient visual motion, indicating three kinds of self-movement. Experimental Brain Research 143, 7888. doi: 10.1007/s00221-001-0947-y.CrossRefGoogle ScholarPubMed
Biber, U. & Ilg, U.J. (2008). Initiation of smooth-pursuit eye movements by real and illusory contours. Vision Research, 48, 10021013. doi: 10.1016/j.visres.2008.01.021.CrossRefGoogle ScholarPubMed
Biederman, I. (2001). Recognizing depth-rotated objects: A review of recent research and theory. Spatial Vision 13, 241253.CrossRefGoogle Scholar
Born, R.T. & Bradley, D.C. (2005). Structure and function of visual area MT. Annual Review of Neuroscience 28, 157189. doi: 10.1146/annurev.neuro.26.041002.131052.CrossRefGoogle ScholarPubMed
Born, R.T., Groh, J.M., Zhao, R. & Lukasewycz, S.J. (2000). Segregation of object and background motion in visual area MT: Effects of microstimulation on eye movements. Neuron 26, 725734.CrossRefGoogle ScholarPubMed
Born, R.T. & Tootell, R.B. (1992). Segregation of global and local motion processing in primate middle temporal visual area. Nature 357, 497499. doi: 10.1038/357497a0.CrossRefGoogle ScholarPubMed
Borst, G., Thompson, W.L. & Kosslyn, S.M. (2011). Understanding the dorsal and ventral systems of the human cerebral cortex: Beyond dichotomies. The American Psychologist 66, 624632. doi: 10.1037/a0024038.CrossRefGoogle ScholarPubMed
Bradley, D.C. & Andersen, R.A. (1998). Center-surround antagonism based on disparity in primate area MT. The Journal of Neuroscience 18, 75527565.CrossRefGoogle ScholarPubMed
Brincat, S.L. & Connor, C.E. (2004). Underlying principles of visual shape selectivity in posterior inferotemporal cortex. Nature Neuroscience 7, 880886. doi: 10.1038/nn1278.CrossRefGoogle ScholarPubMed
Brodeur, M., Lepore, F., Bacon, B.A. & Debruille, J.B. (2009). Simultaneous completions of modal and amodal figures: Visual evoked potentials reveal asymmetrical interference effects. Visual Cognition 17, 632654. doi: 10.1080/13506280802003640.CrossRefGoogle Scholar
Caplovitz, G.P., Barroso, D.J., Hsieh, P.-J. & Tse, P.U. (2008). FMRI reveals that non-local processing in ventral retinotopic cortex underlies perceptual grouping by temporal synchrony. Human Brain Mapping 29, 651661. doi: 10.1002/hbm.20429.CrossRefGoogle ScholarPubMed
Caplovitz, G.P. & Tse, P.U. (2007). V3A processes contour curvature as a trackable feature for the perception of rotational motion. Cerebral Cortex 17, 11791189. doi: 10.1093/cercor/bhl029.CrossRefGoogle ScholarPubMed
Carlson, E.T., Rasquinha, R.J., Zhang, K. & Connor, C.E. (2011 a). A sparse object coding scheme in area V4. Current Biology: CB 21, 288293. doi: 10.1016/j.cub.2011.01.013.CrossRefGoogle ScholarPubMed
Carlson, T., Hogendoorn, H., Fonteijn, H. & Verstraten, F.A.J. (2011 b). Spatial coding and invariance in object-selective cortex. Cortex 47, 1422. doi: 10.1016/j.cortex.2009.08.015.CrossRefGoogle ScholarPubMed
Cavina-Pratesi, C., Goodale, M.A. & Culham, J.C. (2007). FMRI reveals a dissociation between grasping and perceiving the size of real 3D objects. PLoS One 2, e424. doi: 10.1371/journal.pone.0000424.CrossRefGoogle ScholarPubMed
Chandrasekaran, C., Canon, V., Dahmen, J.C., Kourtzi, Z. & Welchman, A.E. (2007). Neural correlates of disparity-defined shape discrimination in the human brain. Journal of Neurophysiology 97, 15531565. doi: 10.1152/jn.01074.2006.CrossRefGoogle ScholarPubMed
Cottereau, B.R., McKee, S.P., Ales, J.M. & Norcia, A.M. (2011). Disparity-tuned population responses from human visual cortex. The Journal of Neuroscience 31, 954965. doi: 10.1523/JNEUROSCI.3795-10.2011.CrossRefGoogle ScholarPubMed
Cottereau, B.R., McKee, S.P., Ales, J.M. & Norcia, A.M. (2012 a). Disparity-specific spatial interactions: Evidence from EEG source imaging. The Journal of Neuroscience 32, 826840. doi: 10.1523/JNEUROSCI.2709-11.2012.CrossRefGoogle ScholarPubMed
Cottereau, B.R., McKee, S.P. & Norcia, A.M. (2012 b). Bridging the gap: Global disparity processing in the human visual cortex. Journal of Neurophysiology 107, 24212429. doi: 10.1152/jn.01051.2011.CrossRefGoogle Scholar
Cox, D.D., Meier, P., Oertelt, N. & DiCarlo, J.J. (2005). “Breaking” position-invariant object recognition. Nature Neuroscience 8, 11451147. doi: 10.1038/nn1519.CrossRefGoogle ScholarPubMed
Culham, J.C., Danckert, S.L., DeSouza, J.F.X., Gati, J.S., Menon, R.S. & Goodale, M.A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental Brain Research 153, 180189. doi: 10.1007/s00221-003-1591-5.CrossRefGoogle Scholar
Davis, G. & Driver, J. (1994). Parallel detection of Kanizsa subjective figures in the human visual system. Nature 371, 791793.CrossRefGoogle ScholarPubMed
DeAngelis, G. (2000). Seeing in three dimensions: The neurophysiology of stereopsis. Trends in Cognitive Sciences 4, 8090.CrossRefGoogle ScholarPubMed
Deangelis, G.C. & Newsome, W.T. (1999). Organization of disparity-selective neurons in macaque area MT. The Journal of Neuroscience 19, 13981415.CrossRefGoogle ScholarPubMed
Denys, K., Vanduffel, W., Fize, D., Nelissen, K., Peuskens, H., Van Essen, D. & Orban, G.A. (2004). The processing of visual shape in the cerebral cortex of human and nonhuman primates: A functional magnetic resonance imaging study. The Journal of Neuroscience 24, 25512565. doi: 10.1523/JNEUROSCI.3569-03.2004.CrossRefGoogle ScholarPubMed
Desimone, R., Schein, S.J., Moran, J. & Ungerleider, L.G. (1985). Contour, color and shape analysis beyond the striate cortex. Vision Research 25, 441452.CrossRefGoogle ScholarPubMed
Dupont, P., DeBruyn, B., Vandenberghe, R., Rosier, A., Michiels, J., Marchal, G. & Orban, G. (1997). The kinetic occipital region in human visual cortex. Cerebral Cortex 7, 283292.CrossRefGoogle ScholarPubMed
Engel, S.A., Glover, G.H. & Wandell, B.A. (1997). Retinotopic organization in human visual cortex and the spatial precision of functional MRI. Cerebral Cortex 7, 181192.CrossRefGoogle ScholarPubMed
Fang, F. & He, S. (2005). Cortical responses to invisible objects in the human dorsal and ventral pathways. Nature Neuroscience 8, 13801385. doi: 10.1038/nn1537.CrossRefGoogle ScholarPubMed
Ferber, S., Humphrey, G.K. & Vilis, T. (2003). The lateral occipital complex subserves the perceptual persistence of motion-defined groupings. Cerebral Cortex 13, 716721.CrossRefGoogle ScholarPubMed
Ferber, S., Humphrey, G.K. & Vilis, T. (2005). Segregation and persistence of form in the lateral occipital complex. Neuropsychologia 43, 4151. doi: 10.1016/j.neuropsychologia.2004.06.020.CrossRefGoogle ScholarPubMed
Fesi, J.D., Yannes, M.P., Brinckmann, D.M., Ales, J.M., Norcia, A.M. & Gilmore, R.O. (2011). Distinct cortical responses to 2D figures defined by motion contrast. Vision Research 51, 21102120.CrossRefGoogle ScholarPubMed
Fiorentini, A. (1989). Differences between fovea and parafovea in visual search processes. Vision Research 29, 11531164.CrossRefGoogle ScholarPubMed
Fujita, I. (2003). The inferior temporal cortex: Architecture, computation, and representation. Journal of Neurocytology 31, 359371.CrossRefGoogle Scholar
Gauthier, I., Hayward, W.G., Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. (2002). BOLD activity during mental rotation and viewpoint-dependent object recognition. Neuron 34, 161171.CrossRefGoogle ScholarPubMed
Gauthier, I, Skudlarski, P., Gore, J.C. & Anderson, A.W. (2000). Expertise for cars and birds recruits brain areas involved in face recognition. Nature Neuroscience 3, 191197. doi: 10.1038/72140.CrossRefGoogle ScholarPubMed
Gauthier, I, Tarr, M.J., Anderson, A.W., Skudlarski, P. & Gore, J.C. (1999). Activation of the middle fusiform “face area” increases with expertise in recognizing novel objects. Nature Neuroscience 2, 568573. doi: 10.1038/9224.CrossRefGoogle ScholarPubMed
Girard, P., Lomber, S.G. & Bullier, J. (2002). Shape discrimination deficits during reversible deactivation of area V4 in the macaque monkey. Cerebral Cortex 12, 11461156.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kourtzi, Z. & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision Research 41, 14091422.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Edelman, S., Avidan, G., Itzchak, Y. & Malach, R. (1999). Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron 24, 187203.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Kushnir, T., Edelman, S., Itzchak, Y. & Malach, R. (1998). Cue-invariant activation in object-related areas of the human occipital lobe. Neuron 21, 191202.CrossRefGoogle ScholarPubMed
Grill-Spector, K. & Malach, R. (2004). The human visual cortex. Annual Review of Neuroscience 27, 649677. doi: 10.1146/annurev.neuro.27.070203.144220.CrossRefGoogle ScholarPubMed
Grosof, D.H., Shapley, R.M. & Hawken, M.J. (1993). Macaque V1 neurons can signal “illusory” contours. Nature 365, 550552.CrossRefGoogle ScholarPubMed
Gurnsey, R., Pearson, P. & Day, D. (1996). Texture segmentation along the horizontal meridian: Nonmonotonic changes in performance with eccentricity. Journal of Experimental Psychology. Human Perception and Performance 22, 738757.CrossRefGoogle ScholarPubMed
Guzzon, D. & Casco, C. (2011). The effect of visual experience on texture segmentation without awareness. Vision Research 51, 25092516. doi: 10.1016/j.visres.2011.10.006.CrossRefGoogle ScholarPubMed
Halgren, E., Mendola, J., Chong, C.D., & Dale, A.M. (2003). Cortical activation to illusory shapes as measured with magnetoencephalography. NeuroImage 18, 10011009. doi: 10.1016/S1053-8119(03)00045-4.CrossRefGoogle ScholarPubMed
Hasson, U., Levy, I., Behrmann, M., Hendler, T. & Malach, R. (2002). Eccentricity bias as an organizing principle for human high-order object areas. Neuron 34, 479490.CrossRefGoogle ScholarPubMed
Haxby, J.V., Grady, C.L., Horwitz, B., Ungerleider, L.G., Mishkin, M., Carson, R.E., Herscovitch, P., Schapiro, M.B. & Rapoport, S.I. (1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences of the United states of America 88, 16211625.CrossRefGoogle ScholarPubMed
Haxby, J.V., Guntupalli, J.S., Connolly, A.C., Halchenko, Y.O., Conroy, B.R., Gobbini, M.I., Hanke, M. & Ramadge, P.J. (2011). A common, high-dimensional model of the representational space in human ventral temporal cortex. Neuron 72, 404416. doi: 10.1016/j.neuron.2011.08.026.CrossRefGoogle ScholarPubMed
Hegdé, J. & Van Essen, D.C. (2007). A comparative study of shape representation in macaque visual areas V2 and V4. Cerebral Cortex 17, 11001116. doi: 10.1093/cercor/bhl020.CrossRefGoogle ScholarPubMed
Heider, B., Meskenaite, V. & Peterhans, E. (2000). Anatomy and physiology of a neural mechanism defining depth order and contrast polarity at illusory contours. The European Journal of Neuroscience 12, 41174130.CrossRefGoogle ScholarPubMed
Hesselmann, G., Hebart, M. & Malach, R. (2011). Differential BOLD activity associated with subjective and objective reports during “blindsight” in normal observers. The Journal of Neuroscience 31, 1293612944. doi: 10.1523/JNEUROSCI.1556-11.2011.CrossRefGoogle Scholar
Hesselmann, G. & Malach, R. (2011). The link between fMRI-BOLD activation and perceptual awareness is “stream- invariant” in the human visual system. Cerebral Cortex 21, 28292837. doi: 10.1093/cercor/bhr085.CrossRefGoogle ScholarPubMed
Hinkle, D.A. & Connor, C.E. (2002). Three-dimensional orientation tuning in macaque area V4. Nature Neuroscience 5, 665670. doi: 10.1038/nn875.CrossRefGoogle ScholarPubMed
Hinkle, D.A. & Connor, C.E. (2005). Quantitative characterization of disparity tuning in ventral pathway area V4. Journal of Neurophysiology 94, 27262737. doi: 10.1152/jn.00341.2005.CrossRefGoogle ScholarPubMed
Hirsch, J. & Curcio, C.A. (1989). The spatial resolution capacity of human foveal retina. Vision Research 29, 10951101.CrossRefGoogle ScholarPubMed
Huang, X., Albright, T.D. & Stoner, G.R. (2007). Adaptive surround modulation in cortical area MT. Neuron 53, 761770. doi: 10.1016/j.neuron.2007.01.032.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology 148, 574591.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1968). Receptive fields and functional architecture of monkey striate cortex. Journal of Physiology 195, 215243.CrossRefGoogle ScholarPubMed
Hung, C.C., Carlson, E.T. & Connor, C.E. (2012). Medial axis shape coding in macaque inferotemporal cortex. Neuron 74, 10991113. doi: 10.1016/j.neuron.2012.04.029.CrossRefGoogle ScholarPubMed
Huth, A.G., Nishimoto, S., Vu, A.T. & Gallant, J.L. (2012). A continuous semantic space describes the representation of thousands of object and action categories across the human brain. Neuron 76, 12101224. doi: 10.1016/j.neuron.2012.10.014.CrossRefGoogle ScholarPubMed
Huxlin, K.R., Saunders, R.C., Marchionini, D., Pham, H.A. & Merigan, W.H. (2000). Perceptual deficits after lesions of inferotemporal cortex in macaques. Cerebral Cortex 10, 671683.CrossRefGoogle ScholarPubMed
Ito, M., Tamura, H., Fujita, I. & Tanaka, K. (1995). Size and position invariance of neuronal responses in monkey inferotemporal cortex. Journal of Neurophysiology 73, 218226.CrossRefGoogle ScholarPubMed
James, T.W., Culham, J., Humphrey, G.K., Milner, A.D. & Goodale, M.A. (2003). Ventral occipital lesions impair object recognition but not object-directed grasping: An fMRI study. Brain 126, 24632475. doi: 10.1093/brain/awg248.CrossRefGoogle Scholar
James, T.W., Humphrey, G.K., Gati, J.S., Menon, R.S. & Goodale, M.A. (2002). Differential effects of viewpoint on object-driven activation in dorsal and ventral streams. Neuron 35, 793801.CrossRefGoogle ScholarPubMed
Janssen, P., Srivastava, S., Ombelet, S. & Orban, G.A. (2008). Coding of shape and position in macaque lateral intraparietal area. The Journal of Neuroscience 28, 66796690. doi: 10.1523/JNEUROSCI.0499-08.2008.CrossRefGoogle ScholarPubMed
Julesz, B. (1981). Textons, the elements of texture perception, and their interactions. Nature 290, 9197.CrossRefGoogle ScholarPubMed
Kanizsa, G. (1979). Organization in Vision: Essays on Gestalt Perception. New York: Praeger.Google Scholar
Kanwisher, N.G., Chun, M.M., McDermott, J. & Ledden, P.J. (1996). Functional imaging of human visual recognition. Cognitive Brain Research 5, 5567.CrossRefGoogle ScholarPubMed
Kanwisher, N., McDermott, J. & Chun, M.M. (1997). The fusiform face area: A module in human extrastriate cortex specialized for face perception. The Journal of Neuroscience 17, 43024311.CrossRefGoogle ScholarPubMed
Kastner, S., De Weerd, P. & Ungerleider, L.G. (2000). Texture segregation in the human visual cortex: A functional MRI study. Journal of Neurophysiology 83, 24532457.CrossRefGoogle ScholarPubMed
Keane, B.P., Mettler, E., Tsoi, V., & Kellman, P.J. (2011). Attentional signatures of perception: Multiple object tracking reveals the automaticity of contour interpolation. Journal of Experimental Psychology: Human Perception & Performance 37(3), 685698.Google ScholarPubMed
Kellman, P.J., Garrigan, P. & Shipley, T.F. (2005). Object interpolation in three dimensions. Psychological Review 112, 586609. doi: 10.1037/0033-295X.112.3.586.CrossRefGoogle ScholarPubMed
Kim, J.G. & Biederman, I. (2012). Greater sensitivity to nonaccidental than metric changes in the relations between simple shapes in the lateral occipital cortex. NeuroImage 63, 18181826. doi: 10.1016/j.neuroimage.2012.08.066.CrossRefGoogle ScholarPubMed
Kimchi, R. & Peterson, M.A. (2008). Figure-ground segmentation can occur without attention. Psychological Science 19, 660668. doi: 10.1111/j.1467-9280.2008.02140.x.CrossRefGoogle ScholarPubMed
Klaver, P., Lichtensteiger, J., Bucher, K., Dietrich, T., Loenneker, T., & Martin, E. (2008). Dorsal stream development in motion and structure-from-motion perception. NeuroImage 39(4), 18151823.CrossRefGoogle ScholarPubMed
Knebel, J.F. & Murray, M.M. (2012). Towards a resolution of conflicting models of illusory contour processing in humans. NeuroImage 59, 28082817. doi: 10.1016/j.neuroimage.2011.09.031.CrossRefGoogle ScholarPubMed
Kobatake, E. & Tanaka, K. (1994). Neuronal selectivities to complex object features in the ventral visual pathway of the macaque cerebral cortex. Journal of Neurophysiology 71, 856867.CrossRefGoogle ScholarPubMed
Kourtzi, Z., Erb, M., Grodd, W. & Bülthoff, H.H. (2003). Representation of the perceived 3-D object shape in the human lateral occipital complex. Cerebral Cortex 13, 911920.CrossRefGoogle ScholarPubMed
Kourtzi, Z. & Huberle, E. (2005). Spatiotemporal characteristics of form analysis in the human visual cortex revealed by rapid event-related fMRI adaptation. NeuroImage 28, 440452. doi: 10.1016/j.neuroimage.2005.06.017.CrossRefGoogle ScholarPubMed
Kourtzi, Z. & Kanwisher, N.G. (2001). Representation of perceived object shape by the human lateral occipital complex. Science 293, 15061509.CrossRefGoogle ScholarPubMed
Kravitz, D.J., Saleem, K.S., Baker, C.I. & Mishkin, M. (2011). A new neural framework for visuospatial processing. Nature Reviews. Neuroscience 12, 217230. doi: 10.1038/nrn3008.CrossRefGoogle ScholarPubMed
Kriegeskorte, N., Mur, M., Ruff, D.A., Kiani, R., Bodurka, J., Esteky, H., Tanaka, K. & Bandettini, P.A. (2008). Matching categorical object representations in inferior temporal cortex of man and monkey. Neuron 60, 11261141. doi: 10.1016/j.neuron.2008.10.043.CrossRefGoogle ScholarPubMed
Krug, K. & Parker, A.J. (2011). Neurons in dorsal visual area V5/MT signal relative disparity. The Journal of Neuroscience 31, 1789217904. doi: 10.1523/JNEUROSCI.2658-11.2011.CrossRefGoogle ScholarPubMed
Lamme, V.A., Van Dijk, B.W. & Spekreijse, H. (1993). Contour from motion processing occurs in primary visual cortex. Nature 363, 541543. doi: 10.1038/363541a0.CrossRefGoogle ScholarPubMed
Larsson, J. & Heeger, D. (2006). Two retinotopic visual areas in human lateral occipital cortex. The Journal of Neuroscience 26, 1312813142. doi: 10.1523/JNEUROSCI.1657-06.2006.CrossRefGoogle ScholarPubMed
Lee, T.S. & Nguyen, M. (2001). Dynamics of subjective contour formation in the early visual cortex. Proceedings of the National Academy of Sciences of the United States of America 98, 19071911. doi: 10.1073/pnas.031579998.CrossRefGoogle ScholarPubMed
Lehky, S.R. & Sereno, A.B. (2007). Comparison of shape encoding in primate dorsal and ventral visual pathways. Journal of Neurophysiology 97, 307319. doi: 10.1152/jn.00168.2006.CrossRefGoogle ScholarPubMed
Leventhal, A.G., Wang, Y., Schmolesky, M.T. & Zhou, Y. (1998). Neural correlates of boundary perception. Visual Neuroscience 15, 11071118.CrossRefGoogle ScholarPubMed
Levy, I., Hasson, U., Avidan, G., Hendler, T. & Malach, R. (2001). Center-periphery organization of human object areas. Nature Neuroscience 4, 533539. doi: 10.1038/87490.CrossRefGoogle ScholarPubMed
Li, W., Piëch, V. & Gilbert, C.D. (2006). Contour saliency in primary visual cortex. Neuron 50, 951962. doi: 10.1016/j.neuron.2006.04.035.CrossRefGoogle ScholarPubMed
Likova, L. & Tyler, C.W. (2008). Occipital network for figure/ground organization. Experimental Brain Research 189, 257267. doi: 10.1007/s00221-008-1417-6.CrossRefGoogle Scholar
Livingstone, M. & Hubel, D. (1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science 240, 740749.CrossRefGoogle ScholarPubMed
Loffler, G., Yourganov, G., Wilkinson, F. & Wilson, H.R. (2005). fMRI evidence for the neural representation of faces. Nature Neuroscience 8, 13861390. doi: 10.1038/nn1538.CrossRefGoogle ScholarPubMed
Majaj, N.J., Carandini, M. & Movshon, J.A. (2007). Motion integration by neurons in macaque MT Is local, not global. The Journal of Neuroscience 27, 366370. doi: 10.1523/JNEUROSCI.3183-06.2007.CrossRefGoogle Scholar
Malach, R., Levy, I., & Hasson, U. (2002). The topography of higher-order human object areas. Trends in Cognitive Sciences 6(4), 176184.CrossRefGoogle Scholar
Malach, R., Reppas, J.B., Benson, R.R., Kwong, K.K., Jiang, H., Kennedy, W.A., Ledden, P.J., Brady, T.J., Rosen, B.R. & Tootell, R.B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the United States of America 92, 81358139.CrossRefGoogle ScholarPubMed
Marcar, V.L., Xiao, D.K., Raiguel, S.E., Maes, H. & Orban, G.A. (1995). Processing of kinetically defined boundaries in the cortical motion area MT of the macaque monkey. Journal of Neurophysiology 74, 12581270.CrossRefGoogle ScholarPubMed
Marr, D. & Nishihara, H.K. (1978). Representation and recognition of the spatial organization of three-dimensional shapes. Proceedings of the Royal Society of London. Series B, Biological Science 200, 269294.Google ScholarPubMed
Martinez, A., Ramanathan, D.S., Foxe, J.J., Javitt, D.C. & Hillyard, S.A. (2007). The role of spatial attention in the selection of real and illusory objects. The Journal of Neuroscience 27, 79637973. doi: 10.1523/JNEUROSCI.0031-07.2007.CrossRefGoogle ScholarPubMed
Masson, G.S., Mestre, D.R. & Stone, L.S. (1999). Speed tuning of motion segmentation and discrimination. Vision Research 39, 42974308.CrossRefGoogle ScholarPubMed
McMains, S. & Kastner, S. (2011). Interactions of top-down and bottom-up mechanisms in human visual cortex. The Journal of Neuroscience 31, 587597. doi: 10.1523/JNEUROSCI.3766-10.2011.CrossRefGoogle ScholarPubMed
Meinecke, C. (1989). Retinal eccentricity and the detection of targets. Psychological Research 51, 107116.CrossRefGoogle ScholarPubMed
Mendola, J.D., Dale, A.M., Fischl, B., Liu, A.K. & Tootell, R.B. (1999). The representation of illusory and real contours in human cortical visual areas revealed by functional magnetic resonance imaging. The Journal of Neuroscience 19, 85608572.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Pham, H.A. (1998). V4 lesions in macaques affect both single- and multiple-viewpoint shape discriminations. Visual Neuroscience 15, 359367.CrossRefGoogle ScholarPubMed
Merigan, W.H. & Saunders, R.C. (2004). Unilateral deficits in visual perception and learning after unilateral inferotemporal cortex lesions in macaques. Cerebral Cortex 14, 863871. doi: 10.1093/cercor/bhh045.CrossRefGoogle ScholarPubMed
Milner, A.D. (2012). Is visual processing in the dorsal stream accessible to consciousness? Proceedings of the Royal Society of London. Series B, Biological Science 279, 22892298. doi: 10.1098/rspb.2011.2663.Google ScholarPubMed
Milner, A.D. & Goodale, M.A. (2008). Two visual systems re-viewed. Neuropsychologia 46, 774785. doi: 10.1016/j.neuropsychologia.2007.10.005.CrossRefGoogle ScholarPubMed
Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983). Object vision and spatial vision: Two cortical pathways. Trends in Neurosciences 6, 414417. doi: 10.1016/0166-2236(83)90190-X.CrossRefGoogle Scholar
Murray, M.M., Foxe, D.M., Javitt, D.C. & Foxe, J.J. (2004). Setting boundaries: Brain dynamics of modal and amodal illusory shape completion in humans. The Journal of Neuroscience, 24, 68986903. doi: 10.1523/JNEUROSCI.1996-04.2004.CrossRefGoogle ScholarPubMed
Murray, M.M., Wylie, G.R., Higgins, B.A., Javitt, D.C., Schroeder, C.E. & Foxe, J.J. (2002). The spatiotemporal dynamics of illusory contour processing: Combined high-density electrical mapping, source analysis, and functional magnetic resonance imaging. The Journal of Neuroscience 22, 50555073.CrossRefGoogle ScholarPubMed
Mysore, S.G., Vogels, R., Raiguel, S.E. & Orban, G.A. (2006). Processing of kinetic boundaries in macaque V4. Journal of Neurophysiology 95, 18641880. doi: 10.1152/jn.00627.2005.CrossRefGoogle ScholarPubMed
Naselaris, T., Prenger, R.J., Kendrick, N.K., Oliver, M., & Gallant, J.L. (2009). Bayesian reconstruction of natural images from human brain activity. Neuron 62(6), 902915.CrossRefGoogle Scholar
Neri, P., Bridge, H. & Heeger, D.J. (2004). Stereoscopic processing of absolute and relative disparity in human visual cortex. Journal of Neurophysiology 92, 18801891. doi: 10.1152/jn.01042.2003.CrossRefGoogle ScholarPubMed
Newsome, W.T. & Pare, E.B. (1988). A selective impairment of motion perception following lesions of the middle temporal visual area (MT). The Journal of Neuroscience 8, 22012211.CrossRefGoogle ScholarPubMed
Nothdurft, H.C. (1991). Texture segmentation and pop-out from orientation contrast. Vision Research 31, 10731078.CrossRefGoogle ScholarPubMed
Orban, G.A. (2011). The extraction of 3D shape in the visual system of human and nonhuman primates. Annual Review of Neuroscience 34, 361388. doi: 10.1146/annurev-neuro-061010-113819.CrossRefGoogle ScholarPubMed
Orban, G.A., Janssen, P. & Vogels, R. (2006). Extracting 3D structure from disparity. Trends in Neurosciences 29, 466473. doi: 10.1016/j.tins.2006.06.012.CrossRefGoogle ScholarPubMed
Orban, G.A., Van Essen, D. & Vanduffel, W. (2004). Comparative mapping of higher visual areas in monkeys and humans. Trends in Cognitive Sciences 8, 315324. doi: 10.1016/j.tics.2004.05.009.CrossRefGoogle ScholarPubMed
Pack, C.C., Gartland, A.J. & Born, R.T. (2004). Integration of contour and terminator signals in visual area MT of alert macaque. The Journal of Neuroscience 24, 32683280. doi: 10.1523/JNEUROSCI.4387-03.2004.CrossRefGoogle ScholarPubMed
Passingham, R.E. & Toni, I. (2001). Contrasting the dorsal and ventral visual systems: Guidance of movement versus decision making. NeuroImage 14, S125S131. doi: 10.1006/nimg.2001.0836.CrossRefGoogle ScholarPubMed
Pasupathy, A. & Connor, C.E. (2001). Shape representation in area V4: Position-specific tuning for boundary conformation. Journal of Neurophysiology 86, 25052519.CrossRefGoogle ScholarPubMed
Pasupathy, A. & Connor, C.E. (2002). Population coding of shape in area V4. Nature Neuroscience 5, 13321338. doi: 10.1038/nn972.CrossRefGoogle ScholarPubMed
Peterhans, E., Heider, B. & Baumann, R. (2005). Neurons in monkey visual cortex detect lines defined by coherent motion of dots. The European Journal of Neuroscience 21, 10911100. doi: 10.1111/j.1460-9568.2005.03919.x.CrossRefGoogle ScholarPubMed
Poggio, G.F. & Fischer, B. (1977). Binocular interaction and depth sensitivity in striate and prestriate cortex of behaving rhesus monkey. J Neurophysiol 40(6), 13921405.CrossRefGoogle ScholarPubMed
Poort, J., Raudies, F., Wannig, A., Lamme, V.A., Neumann, H. & Roelfsema, P.R. (2012). The role of attention in figure-ground segregation in areas V1 and V4 of the visual cortex. Neuron 75, 143156. doi: 10.1016/j.neuron.2012.04.032.CrossRefGoogle ScholarPubMed
Preston, T.J., Kourtzi, Z. & Welchman, A.E. (2009). Adaptive estimation of three-dimensional structure in the human brain. The Journal of Neuroscience 29, 16881698. doi: 10.1523/JNEUROSCI.5021-08.2009.CrossRefGoogle ScholarPubMed
Preston, T.J., Li, S., Kourtzi, Z. & Welchman, A.E. (2008). Multivoxel pattern selectivity for perceptually relevant binocular disparities in the human brain. The Journal of Neuroscience 28, 1131511327. doi: 10.1523/JNEUROSCI.2728-08.2008.CrossRefGoogle ScholarPubMed
Ramsden, B.M., Hung, C.P. & Roe, A.W. (2001). Real and illusory contour processing in area V1 of the primate: A cortical balancing act. Cerebral Cortex 11, 648665.CrossRefGoogle ScholarPubMed
Regan, D. (2000). Human Perception of Objects: Early Visual Processing of Spatial Form Defined by Luminance, Color, Texture, Motion, and Binocular Disparity (1st ed.). Sunderland, MA: Sinauer Associates Inc.Google Scholar
Roe, A.W., Parker, A.J., Born, R.T. & DeAngelis, G.C. (2007). Disparity channels in early vision. The Journal of Neuroscience 27, 1182011831. doi: 10.1523/JNEUROSCI.4164-07.2007.CrossRefGoogle ScholarPubMed
Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. (1998). Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376381.CrossRefGoogle ScholarPubMed
Roelfsema, P.R., Lamme, V.A. & Spekreijse, H. (2004). Synchrony and covariation of firing rates in the primary visual cortex during contour grouping. Nature Neuroscience 7, 982991. doi: 10.1038/nn1304.CrossRefGoogle ScholarPubMed
Roelfsema, P.R., Tolboom, M. & Khayat, P.S. (2007). Different processing phases for features, figures, and selective attention in the primary visual cortex. Neuron 56, 785792. doi: 10.1016/j.neuron.2007.10.006.CrossRefGoogle ScholarPubMed
Romeo, A., Arall, M. & Supèr, H. (2012). Noise destroys feedback enhanced figure-ground segmentation but not feedforward figure-ground segmentation. Frontiers in Physiology 3, 274. doi: 10.3389/fphys.2012.00274.CrossRefGoogle Scholar
Rust, N.C. & Dicarlo, J.J. (2010). Selectivity and tolerance (“invariance”) both increase as visual information propagates from cortical area V4 to IT. The Journal of Neuroscience 30, 1297812995. doi: 10.1523/JNEUROSCI.0179-10.2010.CrossRefGoogle ScholarPubMed
Sakuraba, S., Sakai, S., Yamanaka, M., Yokosawa, K. & Hirayama, K. (2012). Does the human dorsal stream really process a category for tools? The Journal of Neuroscience 32, 39493953. doi: 10.1523/JNEUROSCI.3973-11.2012.CrossRefGoogle ScholarPubMed
Sary, G., Vogels, R. & Orban, G.A. (1993). Cue-invariant shape selectivity of macaque inferior temporal neurons. Science 260, 995997.CrossRefGoogle ScholarPubMed
Sawamura, H., Georgieva, S., Vogels, R., Vanduffel, W. & Orban, G.A. (2005). Using functional magnetic resonance imaging to assess adaptation and size invariance of shape processing by humans and monkeys. The Journal of Neuroscience 25, 42944306. doi: 10.1523/JNEUROSCI.0377-05.2005.CrossRefGoogle ScholarPubMed
Schenk, T. & McIntosh, R.D. (2010). Do we have independent visual streams for perception and action? Cognitive Neuroscience 1, 5262. doi: 10.1080/17588920903388950.CrossRefGoogle ScholarPubMed
Schira, M.M., Fahle, M., Donner, T.H., Kraft, A. & Brandt, S.A. (2004). Differential contribution of early visual areas to the perceptual process of contour processing. Journal of Neurophysiology 91, 17161721. doi: 10.1152/jn.00380.2003.CrossRefGoogle Scholar
Schluppeck, D. & Engel, S.A. (2002). Color opponent neurons in V1: A review and model reconciling results from imaging and single-unit recording. Journal of Vision 2, 480492.CrossRefGoogle ScholarPubMed
Scholte, H.S., Jolij, J., Fahrenfort, J.J. & Lamme, V.A. (2008). Feedforward and recurrent processing in scene segmentation: Electroencephalography and functional magnetic resonance imaging. Journal of Cognitive Neuroscience 20, 20972109. doi: 10.1162/jocn.2008.20142.CrossRefGoogle ScholarPubMed
Scholte, H.S., Witteveen, S.C., Spekreijse, H. & Lamme, V.A. (2006). The influence of inattention on the neural correlates of scene segmentation. Brain Research 1076, 106115. doi: 10.1016/j.brainres.2005.10.051.CrossRefGoogle ScholarPubMed
Senkowski, D., Röttger, S., Grimm, S., Foxe, J.J. & Herrmann, C.S. (2005). Kanizsa subjective figures capture visual spatial attention: Evidence from electrophysiological and behavioral data. Neuropsychologia 43, 872886. doi: 10.1016/j.neuropsychologia.2004.09.010.CrossRefGoogle ScholarPubMed
Sereno, M.E., Trinath, T., Augath, M. & Logothetis, N.K. (2002). Three-dimensional shape representation in monkey cortex. Neuron 33, 635652.CrossRefGoogle ScholarPubMed
Sheth, B.R., Sharma, J., Rao, S.C. & Sur, M. (1996). Orientation maps of subjective contours in visual cortex. Science 274, 21102115.CrossRefGoogle ScholarPubMed
Shiozaki, H.M., Tanabe, S., Doi, T. & Fujita, I. (2012). Neural activity in cortical area V4 underlies fine disparity discrimination. The Journal of Neuroscience 32, 38303841. doi: 10.1523/JNEUROSCI.5083-11.2012.CrossRefGoogle ScholarPubMed
Shpaner, M., Murray, M.M. & Foxe, J.J. (2009). Early processing in the human lateral occipital complex is highly responsive to illusory contours but not to salient regions. The European Journal of Neuroscience 30, 20182028. doi: 10.1111/j.1460-9568.2009.06981.x.CrossRefGoogle ScholarPubMed
Simoncelli, E.P. & Olshausen, B.A. (2001). Natural image statistics and neural representation. Annu. Rev. Neurosci. 24, 11931216.CrossRefGoogle ScholarPubMed
Singh, M. (2004). Modal and amodal completion generate different shapes. Psychological Science 15, 454459. doi: 10.1111/j.0956-7976.2004.00701.x.CrossRefGoogle ScholarPubMed
Skiera, G., Petersen, D., Skalej, M. & Fahle, M. (2000). Correlates of figure-ground segregation in fMRI. Vision Research 40, 20472056.CrossRefGoogle ScholarPubMed
Stanley, D.A. & Rubin, N. (2003). FMRI activation in response to illusory contours and salient regions in the human lateral occipital complex. Neuron 37, 323331.CrossRefGoogle ScholarPubMed
Stanley, D.A. & Rubin, N. (2005). Functionally distinct sub-regions in the lateral occipital complex revealed by fMRI responses to abstract 2-dimensional shapes and familiar objects. Journal of Vision 5, 911. doi: 10.1167/5.8.911.CrossRefGoogle Scholar
Strother, L., Lavell, C. & Vilis, T. (2012). Figure-ground representation and its decay in primary visual cortex. Journal of Cognitive Neuroscience 24, 905914. doi: 10.1162/jocn_a_00190.CrossRefGoogle ScholarPubMed
Swisher, J.D., Gatenby, J.C., Gore, J.C., Wolfe, B.A, Moon, C.H., Kim, S.G. & Tong, F. (2010). Multiscale pattern analysis of orientation-selective activity in the primary visual cortex. The Journal of Neuroscience 30, 325330. doi: 10.1523/JNEUROSCI.4811-09.2010.CrossRefGoogle ScholarPubMed
Tanaka, K. (1997). Mechanisms of visual object recognition: Monkey and human studies. Current Opinion in Neurobiology 7, 523529.CrossRefGoogle ScholarPubMed
Tanaka, K. (2003). Columns for complex visual object features in the inferotemporal cortex: Clustering of cells with similar but slightly different stimulus selectivities. Cerebral Cortex 13, 9099.CrossRefGoogle ScholarPubMed
Teller, D.Y. (1984). Linking propositions. Vision Research 24, 12331246.CrossRefGoogle ScholarPubMed
Thielscher, A., Kölle, M., Neumann, H., Spitzer, M. & Grön, G. (2008). Texture segmentation in human perception: A combined modeling and fMRI study. Neuroscience 151, 730736. doi: 10.1016/j.neuroscience.2007.11.040.CrossRefGoogle ScholarPubMed
Tootell, R.B., Hadjikhani, N., Hall, E.K., Marrett, S., Vanduffel, W., Vaughan, J.T. & Dale, A.M. (1998). The retinotopy of visual spatial attention. Neuron 21, 14091422.CrossRefGoogle ScholarPubMed
Tootell, R.B., Switkes, E., Silverman, M.S. & Hamilton, S.L. (1988). Functional anatomy of macaque striate cortex. II. Retinotopic organization. The Journal of Neuroscience 8, 15311568.CrossRefGoogle ScholarPubMed
Tootell, R.B., Tsao, D. & Vanduffel, W. (2003). Neuroimaging weighs in: Humans meet macaques in “primate” visual cortex. The Journal of Neuroscience 23, 39813989.CrossRefGoogle ScholarPubMed
Tse, P.U. (1999). Volume completion. Cognitive Psychology 39, 3768. doi: 10.1006/cogp.1999.0715.CrossRefGoogle ScholarPubMed
Tyler, C.W., Likova, L.T., Kontsevich, L.L. & Wade, A.R. (2006). The specificity of cortical region KO to depth structure. NeuroImage 30, 228238. doi: 10.1016/j.neuroimage.2005.09.067.CrossRefGoogle Scholar
Valyear, K.F., Culham, J.C., Sharif, N., Westwood, D. & Goodale, M.A. (2006). A double dissociation between sensitivity to changes in object identity and object orientation in the ventral and dorsal visual streams: A human fMRI study. Neuropsychologia 44, 218228. doi: 10.1016/j.neuropsychologia.2005.05.004.CrossRefGoogle ScholarPubMed
Van Oostende, S., Sunaert, S., Van Hecke, P., Marchal, G. & Orban, G.A. (1997). The kinetic occipital (KO) region in man: An fMRI study. Cerebral Cortex 7, 690701.CrossRefGoogle Scholar
Vanrie, J., Béatse, E., Wagemans, J., Sunaert, S. & Van Hecke, P. (2002). Mental rotation versus invariant features in object perception from different viewpoints: An fMRI study. Neuropsychologia 40, 917930.CrossRefGoogle ScholarPubMed
Verhoef, B.E., Vogels, R. & Janssen, P. (2012). Inferotemporal cortex subserves three-dimensional structure categorization. Neuron 73, 171182. doi: 10.1016/j.neuron.2011.10.031.CrossRefGoogle ScholarPubMed
Vinberg, J. & Grill-Spector, K. (2008). Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. Journal of Neurophysiology 99, 13801393. doi: 10.1152/jn.01223.2007.CrossRefGoogle ScholarPubMed
Von Der Heydt, R. & Peterhans, E. (1989). Mechanisms of contour perception in monkey visual cortex. I. Lines of pattern discontinuity. The Journal of Neuroscience 9, 17311748.CrossRefGoogle ScholarPubMed
Walsh, V., Butler, S.R., Carden, D. & Kulikowski, J.J. (1992). The effects of V4 lesions on the visual abilities of macaques: Shape discrimination. Behavioural Brain Research 50, 115126.CrossRefGoogle ScholarPubMed
Weil, R.S. & Rees, G. (2011). A new taxonomy for perceptual filling-in. Brain Research Reviews 67, 4055. doi: 10.1016/j.brainresrev.2010.10.004.CrossRefGoogle ScholarPubMed
Welchman, A.E., Deubelius, A., Conrad, V., Bülthoff, H.H. & Kourtzi, Z. (2005). 3D shape perception from combined depth cues in human visual cortex. Nature Neuroscience 8, 820827. doi: 10.1038/nn1461.CrossRefGoogle ScholarPubMed
Wong, Y.J., Aldcroft, A.J., Large, M.E., Culham, J.C. & Vilis, T. (2009). The role of temporal synchrony as a binding cue for visual persistence in early visual areas: An fMRI study. Journal of Neurophysiology 102, 34613468. doi: 10.1152/jn.00243.2009.CrossRefGoogle ScholarPubMed
Xiao, D.K., Raiguel, S., Marcar, V. & Orban, G.A. (1997). The spatial distribution of the antagonistic surround of MT/V5 neurons. Cerebral Cortex 7, 662677.CrossRefGoogle ScholarPubMed
Yamane, Y., Carlson, E.T., Bowman, K.C., Wang, Z. & Connor, C.E. (2008). A neural code for three-dimensional object shape in macaque inferotemporal cortex. Nature Neuroscience 11, 13521360. doi: 10.1038/nn.2202.CrossRefGoogle ScholarPubMed
Zeki, S., Perry, R.J. & Bartels, A. (2003). The processing of kinetic contours in the brain. Cerebral Cortex 13, 189202.CrossRefGoogle ScholarPubMed
Zhan, C.A. & Baker, C.L. (2006). Boundary cue invariance in cortical orientation maps. Cerebral Cortex 16, 896906. doi: 10.1093/cercor/bhj033.CrossRefGoogle ScholarPubMed
Zhou, J., Tjan, B.S., Zhou, Y. & Liu, Z. (2008). Better discrimination for illusory than for occluded perceptual completions. Journal of Vision 8, 117. doi: 10.1167/8.7.26.Introduction.CrossRefGoogle ScholarPubMed