Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T16:56:15.840Z Has data issue: false hasContentIssue false

The interstitial nucleus of the superior fasciculus, posterior bundle (INSFp) in the guinea pig: Another nucleus of the accessory optic system processing the vertical retinal slip signal

Published online by Cambridge University Press:  02 June 2009

C. Benassi
Affiliation:
Istituto di Fisiologia Umana, Universita' di Modena, Modena, Italia
G. P. Biral
Affiliation:
Istituto di Fisiologia Umana, Universita' di Modena, Modena, Italia
F. Lui
Affiliation:
Istituto di Fisiologia Umana, Universita' di Modena, Modena, Italia
C. A. Porro
Affiliation:
Istituto di Fisiologia Umana, Universita' di Modena, Modena, Italia
R. Corazza
Affiliation:
Istituto di Fisiologia Umana, Universita' di Modena, Modena, Italia

Abstract

As in rabbit, gerbil, and rat, the guinea pig interstitial nucleus of the superior fasciculus, posterior bundle (INSFp) is a sparse assemblage of neurons scattered among the fibers forming the fasciculus bearing this name. Most of the INSFp neurons are small and are ovoid in shape. Interspersed among these, are a few larger, elongated neurons whose density becomes greater and whose shape becomes fusiform in correspondence to the zone of transition from the superior fasciculus to the ventral part of the medial terminal nucleus (MTN). Like the MTN, the INSFp is activated by retinal-slip signals evoked by whole-field visual patterns moving in the vertical direction, as shown by the increase of 14C-2-deoxyglucose (2DG) uptake into this nucleus. At the same level of luminous flux, neither pattern moving in the horizontal direction nor the same pattern held stationary can elicit increases in the INSFp 2DG assumption. The specificity of the observed increases in metabolic rates in INSFp following vertical whole-field motion suggests that this assemblage of neurons relays visual signals used in the control of vertical optokinetic nystagmus.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biral, G.P., Cavazzuti, M., Porro, C, Ferrari, R. & Corazza, R. (1984). 14C-Deoxyglucose Uptake Of the rat visual centers under monocular optokinetic stimulation. Behavioural Brain Research 11, 271275.CrossRefGoogle ScholarPubMed
Biral, G.P., Porro, C.A., Cavazzuti, M., Benassi, C. & Corazza, R. (1987). Vertical and horizontal visual whole-field motion differently affect the metabolic activity of the rat medial terminal nucleus. Brain Research 412, 4353.CrossRefGoogle ScholarPubMed
Giolli, R.A. (1961). An experimental study of the accessory optic tracts (transpeduncolar tracts and anterior accessory optic tracts) in the rabbit. Journal of Comparative Neurology 117, 7796.CrossRefGoogle ScholarPubMed
Giolli, R.A. & Creel, D.J. (1973). The primary optic projections in pigmented and albino guinea pigs: an experimental degeneration study. Brain Research 55, 2539.CrossRefGoogle ScholarPubMed
Giolli, R.A., Blanks, R.H.I. & Torigoe, Y. (1984). Pretectal and brainstem projections of medial terminal nucleus of the accessory optic system of the rabbit and rat as studied by anterograde and retrograde neuronal tracing methods. Journal of Comparative Neurology 227, 228251.CrossRefGoogle ScholarPubMed
Giolli, R.A., Blanks, R.H.I., Torigoe, Y. & Williams, D.W. (1985 a). Projections of medial terminal accessory optic nucleus, ventral tegmental nuclei, and substantia nigra of rabbit and rat as studied by retrograde axonal transport of horseradish peroxidase. Journal of Comparative Neurology 232, 99116.CrossRefGoogle ScholarPubMed
Giolli, R.A., Peterson, G.M., Riback, C.E., McDonald, H.M., Blanks, R.H.I. & Fallon, J.H. (1985 b). GABAergic neurons comprise a major cell type in rodent visual relay nuclei: an immunocy-tochemical study of pretectal and accessory optic nuclei. Experimental Brain Research 61, 194203.CrossRefGoogle Scholar
Giolli, R.A., Torigoe, Y. & Blanks, R.H.I. (1988). Nonretinal projections to the medial terminal accessory optic nucleus in rabbit and rat: a retrograde and anterograde transport study. Journal of Comparative Neurology 269, 7386.CrossRefGoogle Scholar
Grasse, K.L. & Cynader, M.S. (1982). Electrophysiology of medial terminal nucleus of accessory optic system in the cat. Journal of Neurophysiology 48, 490504.CrossRefGoogle ScholarPubMed
Grasse, K.L. & Cynader, M.S. (1984). Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. Journal of Neurophysiology 51, 276293.CrossRefGoogle ScholarPubMed
Gregory, K.M. & Giolli, R.A. (1985). The dendritic architecture of the medial terminal nucleus of the accessory optic system in rat, rabbit, and cat. Experimental Brain Research 60, 501508.CrossRefGoogle ScholarPubMed
Hayhow, W.R., Webb, C. & Jervie, A. (1960). The accessory optic fiber system in the rat. Journal of Comparative Neurology 115, 187215.CrossRefGoogle ScholarPubMed
Kadekaro, M., Vance, W.H., Terrell, M.L., Gary, H., Eisenberg, H.M. & Sokoloff, L. (1987). Effects of antidromic stimulation of the ventral root on glucose utilization in the ventral horn of the spinal cord in the rat. Proceedings of National Academy of Sciences of the U.S.A. 84, 54925495.CrossRefGoogle ScholarPubMed
Lázár, G. (1983). Retinal projections of the pigmented guinea pig. Acta Biologica Hungarica 34, 207213.Google ScholarPubMed
Lui, F., Benassi, C, Biral, G.P., Cavazzuti, M., Porro, C.A. & Corazza, R. (1987). Functional metabolic mapping of guinea pig visual centers which process horizontal and vertical retinal slip signals. Neuroscience 22, S732.Google Scholar
Nudo, R.J. & Masterton, R.B. (1986). Stimulation-induced 14C-2-deoxyglucose labeling of synaptic activity in the central auditory system. Journal of Comparative Neurology 245, 553565.CrossRefGoogle ScholarPubMed
Schwartz, W.J., Smith, C.B., Davidsen, T., Sawaki, H., Sokoloff, L., Mata, M., Fink, D.J. & Gainer, H. (1979). Metabolic mapping of functional activity in the hypothalamo-neurohypophysial system of the rat. Science 205, 723725.CrossRefGoogle ScholarPubMed
Simpson, J.I., Soodack, R.E. & Hess, R. (1979). The accessory optic system and its relation to the vestibulocerebellum. In Reflex Control of Posture and Movement, Progress in Brain Research, Vol. 50, ed. Granit, R. & Pompeiano, O., pp. 715724. Amsterdam, Holland: Elsevier.CrossRefGoogle Scholar
Simpson, J.I. (1984). The accessory optic system. Annual Review of Neuroscience 7, 1341.CrossRefGoogle ScholarPubMed
Sokoloff, L. (1977). Relation between physiological function and energy metabolism in the central nervous system. Journal of Neurochemistry 29, 1326.CrossRefGoogle ScholarPubMed
Takada, M., Li, Z.K. & Hattori, T. (1987). Somatic labeling of the medial terminal nucleus of the accessory optic system with WGA-HRP injected into the rat occipital cortex. Brain Research Bulletin 18, 139142.CrossRefGoogle ScholarPubMed
Terubayashi, H. & Fujisawa, H. (1984). The accessory optic system in the rodents: a wholemount HRP study. Journal of Comparative Neurology 227, 285295.CrossRefGoogle ScholarPubMed