Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T05:26:42.307Z Has data issue: false hasContentIssue false

Habituation-like decrease in the responses of neurons in inferior temporal cortex of the macaque

Published online by Cambridge University Press:  02 June 2009

Earl K. Miller
Affiliation:
Department of Psychology, Princeton University, Princeton, New Jersey

Abstract

In both anesthetized and behaving macaques, we examined the responses of neurons in the inferior temporal cortex (IT) to repeated presentation of a visual stimulus. In anesthetized animals, the responsiveness of IT neurons decreased with repeated stimulus presentation at interstimulus intervals (ISIs) of 2–12 s but not at 20 s. Responsiveness recovered after a 5-min period of no stimulus presentation. The response decrement was similar in anesthetized and awake animals at a 2-s ISI, but at a 6-s ISI, response decrement in the awake animal was much less.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arden, G.B. (1963). Complex receptive fields and responses to moving objects in cells of the rabbit's lateral geniculate body. Journal of Physiology (London) 166, 480488.Google Scholar
Barlow, H.B. & Hill, R.M. (1963). Evidence for a physiological explanation of the waterfall phenomenon and figural aftereffects. Nature 200, 13451347.CrossRefGoogle Scholar
Brooks, V.B., Rudomin, P. & Slayman, C.L. (1961). Sensory activation of neurons in the cat's cerebral cortex. Journal of Neurophysiology 24, 286325.CrossRefGoogle Scholar
Brown, M.W., Wilson, F.A.W. & Riches, I.P. (1987). Neuronal evidence that inferomedial temporal cortex is more important than hippocampus in certain processes underlying recognition memory. Brain Research 409, 158162.CrossRefGoogle ScholarPubMed
Bruce, C.J., Desimone, R. & Gross, C.G. (1981). Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. Journal of Neurophysiology 46, 369384.CrossRefGoogle Scholar
Desimone, R., Albright, T.D., Gross, C.G. & Bruce, C. (1984). Stimulus selective properties of inferior temporal neurons in the macaque. Journal of Neuroscience 4, 20512062.CrossRefGoogle ScholarPubMed
Desimone, R. & Gross, C.G. (1979). Visual areas in the temporal cortex of the macaque. Brain Research 178, 363380.CrossRefGoogle ScholarPubMed
Evans, E.F. & Whitfield, I.C. (1964). Classification of unit responses in the auditory cortex of the unanesthetized and unrestrained cat. Journal of Physiology (London) 171, 476493.Google Scholar
Fuster, J.M. & Jervey, J.P. (1982). Neuronal firing in the inferotemporal cortex of the monkey in a visual memory task. Journal of Neuroscience 2, 361375.CrossRefGoogle Scholar
Galambos, R. (1960). Studies of the auditory system with implanted electrodes. In Neural Mechanisms of the Auditory and Vestibular Systems, ed. Rasmussen, G.L. & Windle, W.F., pp. 137151. Springfield: Thomas.Google Scholar
Gochin, P.M., Miller, E.K., Gross, C.G. & Gerstein, G.L. (1991). Functional interactions among neurons in inferior temporal cortex of the awake macaque. Experimental Brain Research 84, 505516.CrossRefGoogle ScholarPubMed
Gross, C.G. (1973). Visual functions of inferotemporal cortex. In Handbook of Sensory Physiology, Vol. 7, Part 3 B, ed. Jung, R., pp. 451482. Berlin: Springer Verlag.Google Scholar
Gross, C.G., Bender, D.B. & Gerstein, G.L. (1979). Activity of inferior temporal neurons in behaving monkeys. Neuropsychologia 17, 215229.CrossRefGoogle ScholarPubMed
Gross, C.G., Rocha-Miranda, C.E. & Bender, D.B. (1972). Visual properties of neurons in inferotemporal cortex of the macaque. Journal of Neurophysiology 35, 96111.CrossRefGoogle ScholarPubMed
Groves, P.M. & Thompson, R.F. (1970). Habituation: a dual process theory. Psychological Review 77, 419450.CrossRefGoogle ScholarPubMed
Haenny, P.E. & Schiller, P.H. (1988). State-dependent activity in monkey visual cortex, I: Single-cell activity in V1 and V4 on visual tasks. Experimental Brain Research 69, 225244.CrossRefGoogle ScholarPubMed
Harris, J.D. (1943). Habituatory response decrement in the intact organism. Psychological Bulletin 40, 385422.CrossRefGoogle Scholar
Horn, G. & Hill, R.M. (1966). Responsiveness to sensory stimulation of units in the superior colliculus and subjacent tectotegmental regions of the rabbit. Experimental Neurology 14, 199223.CrossRefGoogle ScholarPubMed
Hubel, D.H., Henson, C.O., Rupert, A. & Galambos, R. (1959). “Attention” units in the auditory cortex. Science 129, 12791280.CrossRefGoogle ScholarPubMed
Hubel, D.H. & Wiesel, T.N. (1965). Receptive fields and functional architecture on two non-striate visual areas (18 and 19) of the cat. Journal of Neurophysiology 28, 227289.CrossRefGoogle Scholar
Judge, S.J., Richmond, B.J. & Chu, F.C. (1980). Implantation of magnetic search coils for measurement of eye position: an improved method. Vision Research 20, 535538.CrossRefGoogle ScholarPubMed
Lewis, M.E., Mishkin, M., Bragin, E., Pert, C. & Pert, A. (1981). Opiate receptor gradients in monkey cerebral cortex: correspondence with sensory processing hierarchies. Science 211, 11661169.CrossRefGoogle ScholarPubMed
Marg, E., Adams, J.F. & Rurkin, B. (1968). Receptive fields of cells in human visual cortex. Experimentia 24, 348350.CrossRefGoogle ScholarPubMed
Maunsell, J.H.R. & Newsome, W.T. (1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience 10, 363401.CrossRefGoogle ScholarPubMed
Mikami, K. & Kubota, K. (1980). Inferotemporal neuron activities and color discrimination with delay. Brain Research 182, 6578.CrossRefGoogle ScholarPubMed
Mishkin, M. (1982). A memory system in the monkey. Philosophical Transactions of the Royal Society Londo. B298, 8595.Google ScholarPubMed
Miller, E.K., Li, L. & Desimone, R. (1991). A neural correlate of recency memory in inferior temporal (IT) cortex. Society for Neuroscience Abstracts, in press.Google Scholar
Miyashita, Y. & Chang, H.S. (1988). Neuronal correlate of pictorial short-term memory in the primate temporal cortex. Nature 331, 6870.CrossRefGoogle ScholarPubMed
Moran, J. & Desimone, R. (1985). Selective attention gates visual processing in the extrastriate cortex. Science 229, 782784.CrossRefGoogle ScholarPubMed
Nelson, R.B., Friedman, D.P., O'neill, J.B., Mishkin, M. & Routtenberg, A. (1987). Gradients of protein kinase C substrate phosphorylation in primate visual system peak in visual memory storage areas. Brain Research 416, 387392.CrossRefGoogle ScholarPubMed
Pollen, D.A., Nagler, M., Daugman, J., Kronauer, R. & Cavanaugh, P. (1984). Use of Gabor elementary functions to probe receptive-field substructure of posterior inferotemporal neurons in the owl monkey. Vision Research 24, 233241.CrossRefGoogle ScholarPubMed
Robinson, D.A. (1963). A method of measuring eye movements using a scleral search coil in a magnetic field. IEEE Transactions in Biomedical Engineering 10, 137145.Google ScholarPubMed
Ungerleider, L.G. & Mishkin, M. (1982). Two cortical visual systems. In Analysis of Visual Behavior, ed. Ingle, D.J., Goodale, M.A. & Mansfield, R.J.W., pp. 549586. Cambridge: MIT Press.Google Scholar