Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T04:20:39.043Z Has data issue: false hasContentIssue false

The fate of the oculomotor system in clinical bilateral anophthalmia

Published online by Cambridge University Press:  22 May 2012

HOLLY BRIDGE
Affiliation:
Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
NICOLA RAGGE
Affiliation:
Wessex Regional Genetics Service, Princess Anne Hospital, Southampton, Hampshire, UK School of Life Sciences, Oxford Brookes University, Oxford, UK
NED JENKINSON
Affiliation:
Functional Neurosurgery & Experimental Neurology, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK
ALAN COWEY
Affiliation:
Department of Experimental Psychology, University of Oxford, Oxford, UK
KATE E. WATKINS
Affiliation:
Oxford Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, UK Department of Experimental Psychology, University of Oxford, Oxford, UK

Abstract

The interdependence of the development of the eye and oculomotor system during embryogenesis is currently unclear. The occurrence of clinical anophthalmia, where the globe fails to develop, permits us to study the effects this has on the development of the complex neuromuscular system controlling eye movements. In this study, we use very high-resolution T2-weighted imaging in five anophthalmic subjects to visualize the extraocular muscles and the cranial nerves that innervate them. The subjects differed in the presence or absence of the optic nerve, the abducens nerve, and the extraocular muscles, reflecting differences in the underlying disruption to the eye’s morphogenetic pathway. The oculomotor nerve was present in all anophthalmic subjects and only slightly reduced in size compared to measurements in sighted controls. As might be expected, the presence of rudimentary eye-like structures in the socket appeared to correlate with development and persistence of the extraocular muscles in some cases. Our study supports in part the concept of an initial independence of muscle development, with its maintenance subject to the presence of these eye-like structures.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aktekin, M., Oz, O., Saygili, M.R. & Kurtoglu, Z. (2005). Bilateral congenital anophthalmos and agenesis of the optic pathways. Yonsei Medical Journal 46, 296299.CrossRefGoogle ScholarPubMed
Albernaz, V.S., Castillo, M., Hudgins, P.A. & Mukherji, S.K. (1997). Imaging findings in patients with clinical anophthalmos. AJNR. American Journal of Neuroradiology 18, 555561.Google ScholarPubMed
Aydin, K., Guven, K., Sencer, S., Cikim, A., Gul, N. & Minareci, O. (2003). A new MRI method for the quantitative evaluation of extraocular muscle size in thyroid ophthalmopathy. Neuroradiology 45, 184187.CrossRefGoogle ScholarPubMed
Bohnsack, B.L., Gallina, D., Thompson, H., Kasprick, D.S., Lucarelli, M.J., Dootz, G., Nelson, C., McGonnell, I.M. & Kahana, A. (2011). Development of extraocular muscles requires early signals from periocular neural crest and the developing eye. Archives of Ophthalmology 129, 10301041.CrossRefGoogle ScholarPubMed
Bridge, H., Cowey, A., Ragge, N. & Watkins, K. (2009). Imaging studies in congenital anophthalmia reveal preservation of brain architecture in ‘visual’ cortex. Brain 132, 34673480.CrossRefGoogle ScholarPubMed
Brunquell, P.J., Papale, J.H., Horton, J.C., Williams, R.S., Zgrabik, M.J., Albert, D.M. & Hedley-Whyte, E.T. (1984). Sex-linked hereditary bilateral anophthalmos. Pathologic and radiologic correlation. Archives of Ophthalmology 102, 108113.CrossRefGoogle ScholarPubMed
Daxecker, F. & Felber, S. (1993). Magnetic resonance imaging features of congenital anophthalmia. Ophthalmologica 206, 139142.CrossRefGoogle ScholarPubMed
Demer, J.L., Clark, R.A., Lim, K.H. & Engle, E.C. (2007). Magnetic resonance imaging of innervational and extraocular muscle abnormalities in Duane-radial ray syndrome. Investigative Ophthalmology & Visual Science 48, 55055511.CrossRefGoogle ScholarPubMed
Detorakis, E.T., Engstrom, R.E., Straatsma, B.R. & Demer, J.L. (2003). Functional anatomy of the anophthalmic socket: Insights from magnetic resonance imaging. Investigative Ophthalmology & Visual Science 44, 43074313.CrossRefGoogle ScholarPubMed
Duckworth, T. & Cooper, E.R. (1966). A study of anophthalmia in an adult. Acta Anatomica 63, 509522.CrossRefGoogle Scholar
Engle, E.C. (2002). The molecular basis of the congenital fibrosis syndromes. Strabismus 10, 125128.CrossRefGoogle ScholarPubMed
Engle, E.C., Kunkel, L.M., Specht, L.A. & Beggs, A.H. (1994). Mapping a gene for congenital fibrosis of the extraocular muscles to the centromeric region of chromosome 12. Nature Genetics 7, 6973.CrossRefGoogle Scholar
Gallemaerts, E. (1924). Anophthalmia congenitale et familiale. Annales d’Oculistique 40, 490496.Google Scholar
Haberland, C. & Perou, M. (1969). Primary bilateral anophthalmia. Journal of Neuropathology and Experimental Neurology 28, 337351.CrossRefGoogle ScholarPubMed
Hanke, V. (1904). Dermoid der Cornea. Mikrophthalmus - Aphakia congenita - Endobulbares Lipom. Graefe’s Archive for Clinical and Experimental Ophthalmology 57, 3852.Google Scholar
Kang, N.Y. & Demer, J.L. (2006). Comparison of orbital magnetic resonance imaging in duane syndrome and abducens palsy. American Journal of Ophthalmology 142, 827834.CrossRefGoogle ScholarPubMed
Karim, S., Clark, R.A., Poukens, V. & Demer, J.L. (2004). Demonstration of systematic variation in human intraorbital optic nerve size by quantitative magnetic resonance imaging and histology. Investigative Ophthalmology & Visual Science 45, 10471051.CrossRefGoogle ScholarPubMed
Kim, J.H. & Hwang, J.M. (2005). Hypoplastic oculomotor nerve and absent abducens nerve in congenital fibrosis syndrome and synergistic divergence with magnetic resonance imaging. Ophthalmology 112, 728732.CrossRefGoogle ScholarPubMed
Lim, K.H., Engle, E.C. & Demer, J.L. (2007). Abnormalities of the oculomotor nerve in congenital fibrosis of the extraocular muscles and congenital oculomotor palsy. Investigative Ophthalmology & Visual Science 48, 16011606.CrossRefGoogle ScholarPubMed
McLoon, L.K. (2011). What experimental embryology can teach us about the development of the extraocular muscles in anophthalmia: At the interface of basic and clinical sciences. Archives of Ophthalmology 129, 10771079.CrossRefGoogle ScholarPubMed
O’Keefe, M., Webb, M., Pashby, R.C. & Wagman, R.D. (1987). Clinical anophthalmos. The British Journal of Ophthalmology 71, 635638.CrossRefGoogle ScholarPubMed
Pierson, D.M., Subtil, A., Taboada, E. & Butler, M.G. (2002). Newborn with anophthalmia and features of Fryns syndrome. Pediatric and Developmental Pathology 5, 592596.CrossRefGoogle ScholarPubMed
Recordon, E. & Griffiths, G.M. (1938). A case of primary bilateral anophthalmia (clinical and histological report). The British Journal of Ophthalmology 22, 353360.CrossRefGoogle ScholarPubMed
Traboulsi, E.I. (2004). Congenital abnormalities of cranial nerve development: overview, molecular mechanisms, and further evidence of heterogeneity and complexity of syndromes with congenital limitation of eye movements. Transactions of the American Ophthalmological Society 102, 373389.Google ScholarPubMed
van Duyse, M. (1899). De l’anophthalmie congenitale. Archives d’Ophthalmologie 19, 412429.Google Scholar