Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T18:23:22.411Z Has data issue: false hasContentIssue false

A cross-species comparison of corticogeniculate structure and function

Published online by Cambridge University Press:  16 November 2017

J. MICHAEL HASSE
Affiliation:
Program in Experimental and Molecular Medicine at Dartmouth, Hanover, New Hampshire Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York
FARRAN BRIGGS*
Affiliation:
Program in Experimental and Molecular Medicine at Dartmouth, Hanover, New Hampshire Ernest J. Del Monte Institute for Neuroscience, University of Rochester School of Medicine, Rochester, New York Neuroscience, University of Rochester School of Medicine, Rochester, New York Center for Visual Science, University of Rochester, Rochester, New York
*
*Address correspondence to: Farran Briggs. E-mail: [email protected]

Abstract

The corticogeniculate circuit is an evolutionarily conserved pathway linking the primary visual cortex with the visual thalamus in the feedback direction. While the corticogeniculate circuit is anatomically robust, the impact of corticogeniculate feedback on the visual response properties of visual thalamic neurons is subtle. Accordingly, discovering the function of corticogeniculate feedback in vision has been a particularly challenging task. In this review, the morphology, organization, physiology, and function of corticogeniculate feedback is compared across mammals commonly studied in visual neuroscience: primates, carnivores, rabbits, and rodents. Common structural and organizational motifs are present across species, including the organization of corticogeniculate feedback into parallel processing streams in highly visual mammals.

Type
Review Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alitto, H.J. & Usrey, W.M. (2008). Origin and dynamics of extraclassical suppression in the lateral geniculate nucleus of the macaque monkey. Neuron 57, 135146.Google Scholar
Andolina, I.M., Jones, H.E. & Sillito, A.M. (2013). Effects of cortical feedback on the spatial properties of relay cells in the lateral geniculate nucleus. Journal of Neurophysiology 109, 889899.Google Scholar
Andolina, I.M., Jones, H.E., Wang, W. & Sillito, A.M. (2007). Corticothalamic feedback enhances stimulus response precision in the visual system. Proceedings of the National Academy of Sciences of the United States of America 104, 16851690.Google Scholar
Bal, T., Debay, D. & Destexhe, A. (2000). Cortical feedback controls the frequency and synchrony of oscillations in the visual thalamus. Journal of Neuroscience 20, 74787488.Google Scholar
Benardete, E.A., Kaplan, E. & Knight, B.W. (1932). Contrast gain control in the primate retina: P cells are not X-like, some M cells are. Visual Neuroscience 8, 483486.Google Scholar
Bickford, M.E. (2016). Thalamic circuit diversity: Modulation of the driver/modulator framework. Frontiers in Neural Circuits 9, 18.Google Scholar
Bickle, J., Bernstein, M., Heatley, M., Worley, C. & Stiehl, S. (1999). A functional hypothesis for LGN-V1-TRN connectivities suggested by computer stimulation. Journal of Comparative Neurology 6, 251261.Google Scholar
Blasdel, G.G. & Lund, J.S. (1983). Termination of afferent axons in macaque striate cortex. Journal of Neuroscience 3, 13891413.CrossRefGoogle ScholarPubMed
Blumenfeld, H. & McCormick, D.A. (2000). Corticothalamic inputs control the pattern of activity generated in thalamocortical networks. Journal of Neuroscience 20, 51535162.Google Scholar
Bokor, H., Acsady, L. & Deschenes, M. (2008). Vibrissal responses of thalamic cells that project to the septal columns of the barrel cortex and to the second somatosensory area. Journal of Neuroscience 28, 51695177.Google Scholar
Bortone, D.S., Olsen, S.R. & Scanziani, M. (2014). Translaminar inhibitory cells recruited by layer 6 corticothalamic neurons suppress visual cortex. Neuron 82, 474485.Google Scholar
Bourassa, J. & Deschenes, M. (1995). Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience 66, 253263.Google Scholar
Briggs, F. (2010). Organizing principles of cortical layer 6. Frontiers in Neural Circuits 12, 18.Google Scholar
Briggs, F. & Callaway, E.M. (2001). Layer-specific input to distinct cell types in layer 6 of monkey primary visual cortex. Journal of Neuroscience 21, 36003608.Google Scholar
Briggs, F., Kiley, C.W., Callaway, E.M. & Usrey, W.M. (2016). Morphological substrates for parallel streams of corticogeniculate feedback originating in both V1 and V2 of the macaque monkey. Neuron 90, 388399.Google Scholar
Briggs, F. & Usrey, W.M. (2005). Temporal properties of feedforward and feedback pathways between thalamus and visual cortex in the ferret. Thalamus and Related Systems 3, 133139.Google Scholar
Briggs, F. & Usrey, W.M. (2007a). Corticothalamic circuits: Structure and function. In The New Encyclopedia of Neuroscience, ed., Squire, L., pp. 215219. Elsevier.Google Scholar
Briggs, F. & Usrey, W.M. (2007b). A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey. Journal of Neuroscience 27, 54315436.Google Scholar
Briggs, F. & Usrey, W.M. (2008). Emerging views of corticothalamic function. Current Opinion in Neurobiology 18, 403407.Google Scholar
Briggs, F. & Usrey, W.M. (2009). Parallel processing in the corticogeniculate pathway of the macaque monkey. Neuron 62, 135146.Google Scholar
Briggs, F. & Usrey, W.M. (2011a). Corticogeniculate feedback and parallel processing in the primate visual system. Journal of Physiology 589, 3340.Google Scholar
Briggs, F. & Usrey, W.M. (2011b). Distinct mechanisms of size tuning in primate visual cortex. Journal of Neuroscience 31, 1264412649.Google Scholar
Brody, C.D. (1999). Correlations without synchrony. Neural Computation 11, 15371551.Google Scholar
Brumberg, J.C., Hamzei-Sichani, F. & Yuste, R. (2003). Morphological and physiological characterization of layer 6 corticofugal neurons of mouse primary visual cortex. Journal of Neurophysiology 89, 28542867.Google Scholar
Bullier, J. & Henry, G.H. (1980). Ordinal position and afferent input of neurons in monkey striate cortex. Journal of Comparative Neurology 193, 913935.Google Scholar
Callaway, E.M. (2014). Cell types and local circuits in primary visual cortex of the macaque monkey. In The New Visual Neurosciences, ed. Werner, J.S. & Chalupa, L.M., pp. 353365. Cambridge, MA: MIT Press.Google Scholar
Casagrande, V.A. & Kaas, J.H. (1994). The afferent, intrinsic, and efferent connections of primary visual cortex in primates. In Cerebral Cortex, ed. Peters, A. & Rockland, K.S., pp. 201249. New York: Plenum Press.Google Scholar
Claps, A. & Casagrande, V.A. (1990). The distribution and morphology of corticogeniculate axons in ferrets. Brain Research 530, 126129.Google Scholar
Conley, M. & Raczkowski, D. (1990). Sublaminar organization within layer 6 of the striate cortex in galago. Journal of Comparative Neurology 302, 425436.Google Scholar
Cudiero, J., Rivadulla, C. & Grieve, K.L. (2000). Visual response augmentation in cat (and macaque) LGN: Potentiation by corticofugally mediated gain control in the temporal domain. European Journal of Neuroscience 12, 11351144.Google Scholar
Da Costa, N.M. & Martin, K.A.C. (2009). Selective targeting of dendrites of corticothalamic cells by thalamic afferents in area 17 of the cat. Journal of Neuroscience 29, 1391913928.Google Scholar
Denman, D.J. & Contreras, D. (2015). Complex effects on in vivo visual responses by specific projections from mouse cortical layer 6 to dorsal lateral geniculate nucleus. Journal of Neuroscience 35, 92659280.Google Scholar
Destexhe, A. (2000). Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex. Journal of Physiology (Paris) 94, 391410.Google Scholar
Destexhe, A., Contreras, D. & Steriade, M. (1999). Cortically-induced coherence of a thalamic-generated oscillation. Neuroscience 92, 427430.Google Scholar
Douglas, R.J. & Martin, K.A. (2004). Neuronal circuits of the neocortex. Annual Review of Neuroscience 27, 419451.Google Scholar
Erisir, A., Van Horn, S.C., Bickford, M.E. & Sherman, S.M. (1997a). Immunocytochemistry and distribution of parabrachial terminals in the lateral geniculate nucleus of the cat: A comparison with corticogeniculate terminals. Journal of Comparative Neurology 377, 535549.Google Scholar
Erisir, A., Van Horn, S.C. & Sherman, S.M. (1997b). Relative numbers of cortical and brainstem inputs to the lateral geniculate nucleus. Proceedings of the National Academy of Sciences of the United States of America 94, 15171520.Google Scholar
Eyding, D., Macklis, J.D., Neubacher, U., Funke, K. & Worgotter, F. (2003). Selective elimination of corticogeniculate feedback abolishes the electroencephalogram dependence of primary visual cortical receptive fields and reduces their spatial specificity. Journal of Neuroscience 23, 70217033.Google Scholar
Ferrer, I., Fabregues, I. & Condom, E. (1986a). A Golgi study of the sixth layer of the cerebral cortex. I. The lissencephalic brain of Rodentia, Lagomorpha, Insectivora and Chiroptera. Journal of Anatomy 145, 217234.Google Scholar
Ferrer, I., Fabregues, I. & Condom, E. (1986b). A Golgi study of the sixth layer of the cerebral cortex. II. The gyrencephalic brain of Carnivora, Artiodactyla and Primates. Journal of Anatomy 146, 87104.Google Scholar
Ferster, D. & Lindstrom, S. (1983). An intracellular analysis of geniculo-cortical connectivity in area 17 of the cat. Journal of Physiology 342, 181215.Google Scholar
Ferster, D. & Lindstrom, S. (1985). Augmenting responses evoked in area 17 of the cat by intracortical axon collaterals of cortico-geniculate cells. Journal of Physiology 367, 217232.Google Scholar
Field, G.D. & Chichilnisky, E.J. (2007). Information processing in the primate retina: Circuitry and coding. Annual Reviews Neuroscience 30, 130.Google Scholar
Fitzpatrick, D., Usrey, W.M., Schofield, B.R. & Einstein, G. (1994). The sublaminar organization of corticogeniculate neurons in layer 6 of macaque striate cortex. Visual Neuroscience 11, 307315.Google Scholar
Funke, K., Nelle, E., Li, B. & Worgotter, F. (1996). Corticofugal feedback improves the timing of retino-geniculate signal transmission. NeuroReports 7, 21302134.Google Scholar
Ghazanfar, A.A., Krupa, D.J. & Nicolelis, M.A.L. (2001). Role of cortical feedback in the receptive field structure and nonlinear response properties of somatosensory thalamic neurons. Experimental Brain Research 141, 88100.Google Scholar
Gilbert, C.D. & Kelly, J.P. (1975). The projections of cells in different layers of the cat’s visual cortex. Journal of Comparative Neurology 163, 81106.Google Scholar
Gong, S., Doughty, M., Harbaugh, C.R., Cummins, A., Hatten, M.E., Heintz, N. & Gerfen, C.R. (2007). Targeting cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. Journal of Neuroscience 27, 98179823.Google Scholar
Gradinaru, V., Mogri, M., Thompson, K.R., Henderson, J.M. & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science 324, 354359.Google Scholar
Grieve, K.L. & Sillito, A.M. (1995). Differential properties of cells in the feline primary visual cortex providing the corticofugal feedback to the lateral geniculate nucleus and visual claustrum. Journal of Neuroscience 15, 48684874.Google Scholar
Guillery, R.W. (1969). A quantitative study of synaptic interconnections in the dorsal lateral geniculate nucleus of the cat. Zeitschrift fuer Zellforschung und Mikroskopische Anatomie 96, 3948.Google Scholar
Gulyas, B., Lagae, L., Eysel, U.T. & Orban, G.A. (1990). Corticofugal feedback influences the responses of geniculate neurons to moving stimuli. Experimental Brain Research 79, 441446.Google Scholar
Gur, M., Kagan, I. & Snodderly, D.M. (2005). Orientation and direction selectivity of neurons in V1 of alert monkeys: Functional relationships and laminar distributions. Cerebral Cortex 15, 12071221.Google Scholar
Harvey, A.R. (1978). Characteristics of corticothalamic neurons in area 17 of the cat. Neuroscience Letters 7, 177181.Google Scholar
Hawken, M.J., Parker, A.J. & Lund, J.S. (1988). Laminar organization and contrast sensitivity of direction-selective cells in the striate cortex of the old world monkey. Journal of Neuroscience 8, 35413548.Google Scholar
Hendrickson, A.E., Wilson, J.R. & Ogren, M.P. (1978). The neuroanatomical organization of pathways between the dorsal lateral geniculate nucleus and visual cortex in the old world and new world primates. Journal of Comparative Neurology 182, 123136.Google Scholar
Hendry, S. & Reid, R.C. (2000). The koniocellular pathway in primate vision. Annual Review of Neuroscience 23, 127153.Google Scholar
Hubel, D.H. & Wiesel, T.N. (1972). Laminar and columnar distribution of geniculo-cortical fibers in the macaque monkey. Journal of Comparative Neurology 146, 421450.Google Scholar
Huber, D., Petreanu, L., Ghitani, N., Ranade, S., Hromadka, T., Mainen, Z. & Svoboda, K. (2008). Sparse optical microstimulation in barrel cortex drives learned behavior in freely moving mice. Nature 451, 6164.Google Scholar
Ichida, J.M. & Casagrande, V.A. (2002). Organization of the feedback pathway from striate cortex (V1) to the lateral geniculate nucleus (LGN) in the owl monkey (Aotus trivirgatus). Journal of Comparative Neurology 454, 272283.Google Scholar
Ichida, J.M., Mavity-Hudson, J.A. & Casagrande, V.A. (2014). Distinct patterns of corticogeniculate feedback to different layers of the lateral geniculate nucleus. Eye and Brain 6, 5773.Google Scholar
Irvin, G.E., Norton, T.T., Sesma, M.A. & Casagrande, V.A. (1986). W-Like response properties in interlaminar zone cells in the lateral geniculate nucleus of a primate (Galago crassicaudatus). Brain Research 362, 254270.Google Scholar
Jacobs, E.C., Campagnoni, C., Kampf, K., Reyes, S.D., Kalra, V., Handley, V., Xie, Y-Y., Hong-Hu, Y., Spreur, V., Fisher, R.S., Campagnoni, A.T. (2007). Visualization of corticofugal projections during early cortical development in a T-GFP-transgenic mouse. European Journal of Neuroscience 25, 1730.Google Scholar
Jiang, Z., Johnson, R. & Burkhalter, A. (1993). Visualization of dendritic morphology of cortical projection neurons by retrograde axonal tracing. Journal of Neuroscience Methods 50, 4560.Google Scholar
Jones, E.G. (1985). The Thalamus. New York, NY: Plenum Press.Google Scholar
Jones, H.E., Andolina, I.M., Ahmed, B., Shipp, S., Clements, J.T.C., Grieve, K.L., Cudiero, J., Salt, T.E. & Sillito, A.M. (2012). Differential feedback modulation of center and surround mechanisms in parvocellular cells in the visual thalamus. Journal of Neuroscience 32, 1594615951.Google Scholar
Jones, H.E., Andolina, I.M., Oakely, N.M., Murphy, P.C. & Sillito, A.M. (2000). Spatial summation in lateral geniculate nucleus and visual cortex. Experimental Brain Research 135, 279284.Google Scholar
Jurgens, C.W.D., Bell, K.A., McQuiston, A.R. & Guido, W. (2012). Optogenetic stimulation of the corticothalamic pathway affects relay cells and GABAergic neurons differently in the mouse visual thalamus. Public Library of Science One 7, 114.Google Scholar
Kaplan, E. (2004). The M, P, and K pathways of the primate visual system. In The Visual Neurosciences, ed. Chalupa, L. & Werner, J., pp. 481493. Cambridge, MA: MIT Press.Google Scholar
Kaplan, E. & Shapley, R. (1982). X and Y cells in the lateral geniculate nucleus of macaque monkeys. Journal of Physiology 330, 125143.Google Scholar
Kaplan, E. & Shapley, R. (1986). The primate retina contains two types of ganglion cells, with high and low contrast sensitivity. Proceedings of the National Academy of Sciences of the United States of America 83, 27552757.Google Scholar
Katz, L.C. (1987). Local circuitry of identified projection neurons in cat visual cortex brain slices. Journal of Neuroscience 7, 12231249.Google Scholar
Kim, J., Matney, C.J., Blankenship, A., Hestrin, S. & Brown, S.P. (2014). Layer 6 corticothalamic neurons activate a cortical output layer, layer 5a. Journal of Neuroscience 34, 96569664.Google Scholar
Krahe, T.E., El-Danaf, R.N., Dilger, E.K., Henderson, S.C. & Guido, W. (2011). Morphologically distinct classes of relay cells exhibit regional preferences in the dorsal lateral geniculate nucleus of the mouse. Journal of Neuroscience 31, 1743717448.Google Scholar
Krupa, D.J., Ghazanfar, A.A. & Nicolelis, M.A.L. (1999). Immediate thalamic sensory plasticity depends on corticothalamic feedback. Proceedings of the National Academy of Sciences of the United States of America 96, 82008205.CrossRefGoogle ScholarPubMed
LeVay, S. & Sherk, H. (1981). The visual claustrum of the cat I. Structure and connections. Journal of Neuroscience 1, 956980.Google Scholar
Li, G., Ye, X., Song, T., Yang, Y. & Zhou, Y. (2011). Contrast adaptation in cat lateral geniculate nucleus and influence of corticothalamic feedback. European Journal of Neuroscience 34, 622631.Google Scholar
Li, L. & Ebner, F.F. (2007). Cortical modulation of spatial and angular tuning maps in the rat thalamus. Journal of Neuroscience 27, 167179.Google Scholar
Lin, C.S. & Kaas, J.H. (1977). Projections from cortical visual areas 17, 18, and MT onto the dorsal lateral geniculate nucleus in owl monkeys. Journal of Comparative Neurology 173, 457474.Google Scholar
Ling, S., Pratte, M. & Tong, F. (2015). Attention alters orientation processing in the human lateral geniculate nucleus. Nature Neuroscience 18, 496498.Google Scholar
Lund, J.S. & Boothe, R.G. (1975). Interlaminar connections and pyramidal neuron organization in the visual cortex, area 17, of the macaque monkey. Journal of Comparative Neurology 159, 305334.Google Scholar
Lund, J.S., Lund, R.D., Hendrickson, A.E., Bunt, A.H. & Fuchs, A.F. (1975). The origin of efferent pathways from the primary visual cortex, area 17, of the macaque monkey as shown by retrograde transport of horseradish peroxidase. Journal of Comparative Neurology 164, 287303.Google Scholar
Marrocco, R.T., McClurkin, J.W. & Alkire, M.T. (1996). The influence of the visual cortex on the spatiotemporal response properties of lateral geniculate nucleus cells. Brain Research 737, 110118.Google Scholar
Maunsell, J.H.R., Ghose, G.M., Assad, J.A., McAdams, C.J., Boudreau, C.E. & Noerager, B.D. (1999). Visual response latencies of magnocellular and parvocellular LGN neurons in macaque monkeys. Visual Neuroscience 16, 114.Google Scholar
McAlonan, K., Cavanaugh, J.R. & Wurtz, R.H. (2006). Attentional modulation of thalamic reticular neurons. Journal of Neuroscience 26, 44444450.Google Scholar
McAlonan, K., Cavanaugh, J.R. & Wurtz, R.H. (2008). Guarding the gateway to cortex with attention in visual thalamus. Nature 456, 391394.Google Scholar
Merigan, W.H. & Maunsell, J.H.R. (1993). How parallel are the primate visual pathways. Annual Review of Neuroscience 16, 369402.Google Scholar
Miller, M.W. (1988). Maturation of rat visual cortex: IV. The generation, migration, morphogenesis, and connectivity of atyipcally oriented pyramidal neurons. Journal of Comparative Neurology 274, 387405.Google Scholar
Molotchnikoff, S., Tremblay, F. & Lepore, F. (1984). The role of the visual cortex in response properties of lateral geniculate cells in rats. Experimental Brain Research 53, 223232.Google Scholar
Murphy, P.C., Duckett, S.G. & Sillito, A.M. (2000). Comparison of the laminar distribution of input from areas 17 and 18 of the visual cortex to the lateral geniculate nucleus of the cat. Journal of Neuroscience 20, 845853.Google Scholar
Murphy, P.C. & Sillito, A.M. (1987). Corticofugal feedback influences the generation of length tuning in the visual pathway. Nature 329, 727729.Google Scholar
Murphy, P.C. & Sillito, A.M. (1996). Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. Journal of Neuroscience 16, 11801192.Google Scholar
Nhan, H.L. & Callaway, E.M. (2012). Morphology of superior colliculus- and middle temporal area-projecting neurons in primate primary visual cortex. Journal of Comparative Neurology 520, 5280.Google Scholar
O’Connor, D.H., Fukui, M.M., Pinsk, M.A. & Kastner, S. (2002). Attention modulates responses in the human lateral geniculate nucleus. Nature Neuroscience 5, 12031209.Google Scholar
Olsen, S.R., Bortone, D.S., Adesnik, H. & Scanziani, M. (2012). Gain control by layer six in cortical circuits of vision. Nature 483, 4752.Google Scholar
Przybyszewski, A.W., Gaska, J.P., Foote, W. & Pollen, D.A. (2000). Striate cortex increases contrast gain of macaque LGN neurons. Visual Neuroscience 17, 485494.Google Scholar
Rigas, P. & Castro-Alamancos, M.A. (2007). Thalamocortical up states: Differential effects of intrinsic and extrinsic cortical inputs on persistent activity. Journal of Neuroscience 27, 42614272.Google Scholar
Rivadulla, C., Martinez, L.M., Varela, C. & Cudeiro, J. (2002). Completing the corticofugal loop: A visual role for the corticogeniculate type I metabotropic glutamate receptor. Journal of Neuroscience 22, 29562962.Google Scholar
Robson, J.A. (1983). The morphology of corticofugal axons to the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology 216, 89103.Google Scholar
Schiller, P.H. & Malpeli, J.G. (1978). Functional specificity of lateral geniculate nuclues laminae of the rhesus monkey. Journal of Neurophysiology 41, 788797.Google Scholar
Seabrook, T.A., El-Danaf, R.N., Krahe, T.E., Fox, M.A. & Guido, W. (2013). Retinal input regulates the timing of corticogeniculate innervation. Journal of Neuroscience 33, 1008510097.Google Scholar
Shanks, J.A., Ito, S., Schaevitz, L., Yamada, J., Chen, B., Litke, A.M. & Feldheim, D.A. (2016). Corticothalamic axons are essential for retinal ganglion cell axon targeting to the mouse dorsal lateral geniculate nucleus. Journal of Neuroscience 36, 52525263.Google Scholar
Sherman, S.M. (1996). Dual response modes in lateral geniculate neurons: Mechanisms and functions. Visual Neuroscience 13, 205213.Google Scholar
Sherman, S.M. & Guillery, R.W. (1998). On the actions that one nerve cell can have on another: Distinguishing “drivers” from “modulators”. Proceedings of the National Academy of Sciences of the United States of America 95, 71217126.Google Scholar
Sherman, S.M. & Guillery, R.W. (2006). Exploring the Thalamus and its Role in Cortical Function (2nd ed.). Boston: MIT Press.Google Scholar
Sillito, A.M., Cudeiro, J. & Murphy, P.C. (1993). Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Experimental Brain Research 93, 616.Google Scholar
Sillito, A.M. & Jones, H.E. (2002). Corticothalamic interactions in the transfer of visual information. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357, 17391752.Google Scholar
Sillito, A.M., Jones, H.E., Gerstein, G.L. & West, D.C. (1994). Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369, 479482.Google Scholar
Sincich, L.C. & Horton, J.C. (2005). The circuitry of V1 and V2: Intergration of color, form, and motion. Annual Review of Neuroscience 28, 303326.Google Scholar
Solomon, S.G. & Lennie, P. (2007). The machinery of colour vision. Nature Reviews Neuroscience 8, 276286.Google Scholar
Solomon, S.G., White, A.J.R. & Martin, P.R. (1999). Temporal contrast sensitivity in the lateral geniculate nucleus of a new world monkey, the marmoset Callithrix jacchus . Journal of Physiology 517, 907918.Google Scholar
Solomon, S.G., White, A.J.R. & Martin, P.R. (2002). Extraclassical receptive field properties of parvocellular, magnocellular and koniocellular cells in the primate lateral geniculate nucleus. Journal of Neuroscience 22, 338349.Google Scholar
Steriade, M. (2001). Impact of network activities on neuronal properties in corticothalamic systems. Journal of Neurophysiology 86, 139.Google Scholar
Steriade, M. (2003). The corticothalamic system in sleep. Frontiers in Bioscience 8, d878899.Google Scholar
Suga, N. & Ma, X. (2003). Multiparametric corticofugal modulation and plasticity in the auditory system. Nature Reviews Neuroscience 4, 783794.Google Scholar
Swadlow, H.A. & Weyand, T.G. (1981). Efferent systems of the rabbit visual cortex: Laminar distribution of cells of origin, axonal conduction velocities, and identification of axonal branches. Journal of Comparative Neurology 203, 799822.Google Scholar
Swadlow, H.A. & Weyand, T.G. (1987). Corticogeniculate neurons, corticotectal neurons, and suspected interneurons in visual cortex of awake rabbits: Receptive-field properties, axonal properties, and effects of EEG arousal. Journal of Neurophysiology 57, 9771001.Google Scholar
Temereanca, S., Brown, E.N. & Simons, D.J. (2008). Rapid changes in thalamic firing synchrony during repetitive whisker stimulation. Journal of Neuroscience 28, 1115311164.Google Scholar
Thompson, A.D., Picard, N., Min, L., Fagiolini, M. & Chen, C. (2016). Cortical feedback regulates feedforward retinogeniculate refinement. Neuron 91, 10211033.Google Scholar
Tombol, T. (1984). Layer VI cells. In Cerebral Cortex, ed. Peters, A. & Jones, E.G., pp. 479519. New York: Plenum Press.Google Scholar
Tsumoto, T. & Suda, K. (1980). Three groups of cortico-geniculate neurons and their distribution in binocular and monocular segments of cat striate cortex. Journal of Comparative Neurology 193, 223236.Google Scholar
Updyke, B.V. (1975). The patterns of projection of cortical areas 17, 18, and 19 onto the laminae of the dorsal lateral geniculate nucleus in the cat. Journal of Comparative Neurology 163, 377396.Google Scholar
Usrey, W.M. & Fitzpatrick, D. (1996). Specificity in the axonal connections of layer 6 neurons in tree shrew striate cortex: Evidence for distinct granular and supragranular systems. Journal of Neuroscience 16, 12031218.Google Scholar
Usrey, W.M. & Reid, R.C. (2000). Visual physiology of the lateral geniculate nucleus in two species of new world monkey: Saimiri sciureus and Aotus trivirgatis . Journal of Physiology 523, 755769.Google Scholar
Vanduffel, W., Tootell, R.B.H. & Orban, G. (2000). Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cerebral Cortex 10, 109126.Google Scholar
Wang, W., Jones, H.E., Andolina, I.M., Salt, T.E. & Sillito, A.M. (2006). Functional alignment of feedback effects from visual cortex to thalamus. Nature Neuroscience 9, 13301336.Google Scholar
Webb, B.S., Tinsley, C.J., Barraclough, N.E., Easton, A., Parker, A. & Derrington, A.M. (2002). Feedback from V1 and inhibition from beyond the classical receptive field modulates the response of neurons in the primate lateral geniculate nucleus. Visual Neuroscience 19, 583592.Google Scholar
White, A.J.R., Solomon, S.G. & Martin, P.R. (2001). Spatial properties of koniocellular cells in the lateral geniculate nucleus of the marmoset Callithrix jacchus. Journal of Physiology 553, 519535.Google Scholar
White, A.J.R., Wilder, H.D., Goodchild, A.K., Sefton, A.J. & Martin, P.R. (1998). Segregation of receptive field properties in the lateral geniculate nucleus of the new-world monkey, the marmoset Callithrix jacchus . Journal of Neurophysiology 80, 20632076.Google Scholar
Wiser, A.K. & Callaway, E.M. (1996). Contributions of individual layer 6 pyramidal neurons to local circuitry in macaque primary visual cortex. Journal of Neuroscience 16, 27242739.Google Scholar
Wolfart, J., Debay, D., Le Masson, G., Destexhe, A. & Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience 8, 17601767.Google Scholar
Worgotter, F., Eyding, D., Macklis, J.D. & Funke, K. (2002). The influence of the corticothalamic projection on responses in the thalamus and cortex. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences 357, 18231834.Google Scholar
Wu, Y. & Yan, J. (2007). Modulation of the receptive fields of midbrain neurons elicited by thalamic electrical stimulation through corticofugal feedback. Journal of Neuroscience 27, 1056110658.Google Scholar
Yousif, N. & Denham, M. (2007). The role of cortical feedback in the generation of the temporal receptive field responses of lateral geniculate nucleus neurons: A computational modelling study. Biological Cybernetics 97, 269277.Google Scholar
Zarrinpar, A. & Callaway, E.M. (2006). Local connections to specific types of layer 6 neurons in the rat visual cortex. Journal of Neurophysiology 95, 17511761.Google Scholar
Zhang, Y. & Yan, J. (2008). Corticothalamic feedback for sound-specific plasticity of auditory thalamic neurons elicited by tones paired with basal forebrain stimulation. Cerebral Cortex 18(7), 15211528.Google Scholar