Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-24T12:59:09.993Z Has data issue: false hasContentIssue false

Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test

Published online by Cambridge University Press:  03 July 2008

ANA LAURA DE ARAÚJO MOURA*
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
ROSANI APARECIDA ANTUNES TEIXEIRA
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
NESTOR N. OIWA
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
MARCELO F. COSTA
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
CLAUDIA FEITOSA-SANTANA
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
DAGOBERTO CALLEGARO
Affiliation:
Depto. Neurologia, Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil.
RUSSELL D. HAMER
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil Smith-Kettlewell Eye Research Institute, San Francisco, California
DORA FIX VENTURA
Affiliation:
Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, Brasil
*
Address correspondence and reprint requests to: Ana Laura de Araújo Moura, Depto. Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, Av. Professor Mello Moraes, 1721 Bloco A Sala D-9, 05508-900 São Paulo, SP, Brasil. E-mail: [email protected]

Abstract

We assessed chromatic discrimination in multiple sclerosis (MS) patients both with (ON) and without (no ON) a history of optic neuritis using the Cambridge color test (CCT). Our goal was to determine the magnitude and chromatic axes of any color vision losses in both patient groups, and to evaluate age-related changes in chromatic discrimination in both patient groups compared to normals. Using the CCT, we measured chromatic discrimination along the protan, deutan and tritan axes in 35 patients with MS (17 ON eyes) and 74 age matched controls. Color thresholds for both patient groups were significantly higher than controls' along the protan and tritan axes (p < 0.001). In addition, the ON and no-ON groups differed significantly along all three-color axes (p < 0.001). MS patients presented a progressive color discrimination impairment with age (along the deutan and tritan axes) that was almost two times faster than controls, even in the absence of ON. These findings suggest that demyelinating diseases reduce sensitivity to color vision in both red-green and blue-yellow axes, implying impairment in both parvocellular and koniocellular visual pathways. The CCT is a useful tool to help characterize vision losses in MS, and the relationship between these losses and degree of optic nerve involvement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Barbur, J.L., Harlow, A.J. & Plant, G.T. (1994). Insights into the difference exploits of colour in the visual cortex. Proceedings of the Royal Society of London: Biological Sciences. 258, 327334.Google ScholarPubMed
Barbur, J.L., Moro, S., Harlow, J.A., Lam, B.L. & Liu, M. (2004). Comparison of pupil responses to luminance and colour in severe optic neuritis. Clinical Neurophysiology 115, 26502658.CrossRefGoogle ScholarPubMed
Birch, J. (2001). Diagnosis of Defective Colour Vision. Oxford: Butterworth Heinmann.Google Scholar
Castelo-Branco, M., Faria, P., Forjaz, V., Kozak, L.R. & Azevedo, H. (2004). Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: Correlation with clinical measures. Investigative Ophthalmology & Visual Science 45, 499505.CrossRefGoogle ScholarPubMed
Costa, M.F., Oliveira, A.G., Feitosa-Santana, C., Zatz, M. & Ventura, D.F. (2007). Red-green colour vision impairment in Duchenne muscular dystrophy. American Journal of Human Genetics 80, 10641075.Google Scholar
Costa, M.F., Ventura, D.F., Perazzolo, F., Murakoshi, M.T. & Silveira, L.C.L. (2006). Absence of binocular summation, eye dominance and learning effects in color discrimination. Visual Neuroscience 23, 461469.CrossRefGoogle ScholarPubMed
Fallowfield, L. & Krauskopf, J. (1984). Selective loss of chromatic sensitivity in demyelinating disease. Investigative Ophthalmology & Visual Science 25, 771773.Google ScholarPubMed
Flanagan, P. & Markulev, C. (2005). Spatio-temporal selectivity of loss of colour and luminance contrast sensitivity with multiple sclerosis and optic neuritis. Ophthalmic and Physiological Optics 25, 5765.CrossRefGoogle ScholarPubMed
Flanagan, P. & Zele, A.J. (2004). Chromatic and luminance losses with multiple sclerosis and optic neuritis measured using dynamic random luminance contrast noise. Ophthalmic and Physiological Optics 24, 225233.CrossRefGoogle ScholarPubMed
Frohman, E.M., Frohman, T.C., Zee, D.S., McColl, R. & Galetta, S. (2005). The neuro-ophthalmology of multiple sclerosis. Lancet Neurology 4, 111121.CrossRefGoogle ScholarPubMed
Gualtieri, M., Bandeira, M., Hamer, R.D., Costa, M.F., Oliveira, A.G.F., Sadun, F., De Negri, A.M., Berezovsky, A., Salomão, S.R., Carelli, V., Sadun, A.A. & Ventura, D.F. (2008). Psychophysical analysis of contrast processing segregated into magnocellular and parvocellular systems in unaffected carriers of 11778 LHON. Visual Neuroscience 25, 469474.CrossRefGoogle Scholar
Harrison, A.C., Becker, W.J. & Stell, W.K. (1987). Colour-vision abnormalities in multiple-sclerosis. Canadian Journal of Neurological Sciences 14, 279285.CrossRefGoogle ScholarPubMed
Hennelly, M.L., Barbur, J.L., Edgar, D.F. & Woodward, E.G. (1998). The effect of age on the light scattering characteristics of the eye. Ophthalmic and Physiological Optics 18, 197203.CrossRefGoogle ScholarPubMed
Jackson, T.L., Ong, G.L. & Ripley, L.G. (2004). Orientational contrast sensitivity and chromatic contrast thresholds in multiple sclerosis. American Journal of Ophthalmology 137, 283286.CrossRefGoogle ScholarPubMed
Knoblauch, K., Vital-Durand, F. & Barbur, J.L. (2001). Variation of chromatic sensitivity across the life span. Vision Research 41, 2336.CrossRefGoogle ScholarPubMed
McDonald, W.I. & Barnes, D. (1992). The ocular manifestations of multiple sclerosis. 1. Abnormalities of the afferent visual system. Journal of Neurology, Neurosurgery and Psychiatry 55, 747752.CrossRefGoogle ScholarPubMed
Mollon, J.D. & Reffin, J.P. (1989). A computer-controlled colour-vision test that combines the principles of chibret and of stilling. Journal of Physiology-London 414, 5.Google Scholar
Moro, S.I., Rodriguez-Carmona, M.L., Frost, E.C., Plant, G.T., & Barbur, J.L. (2007). Recovery of vision and pupil responses in optic neuritis and multiple sclerosis. Ophthalmic and Physiological Optics 27, 451460.CrossRefGoogle ScholarPubMed
Mullen, K.T. & Plant, G.T. (1986). Colour and luminance vision in human optic neuritis 137. Brain 109, 113.CrossRefGoogle Scholar
Pokorny, J. & Smith, V.C. (1986). Eye disease and color defects. Vision Research 26, 15731584.CrossRefGoogle ScholarPubMed
Porciatti, V. & Sartucci, F. (1996). Retinal and cortical evoked responses to chromatic contrast stimuli. Specific losses in both eyes of patients with multiple sclerosis and unilateral optic neuritis. Brain 119, 723740.CrossRefGoogle ScholarPubMed
Regan, B.C., Freudenthaler, N., Kolle, R., Mollon, J.D. & Paulus, W. (1998). Colour discrimination thresholds in Parkinson's disease: Results obtained with a rapid computer-controlled colour vision test. Vision Research 38, 34273431.CrossRefGoogle ScholarPubMed
Regan, B.C., Reffin, J.P. & Mollon, J.D. (1994). Luminance noise and the rapid determination of discrimination ellipses in colour deficiency. Vision Research 34, 12791299.CrossRefGoogle ScholarPubMed
Sartucci, F., Murri, L., Orsini, C. & Porciatti, V. (2001). Equiluminant red-green and blue-yellow VEPS in multiple sclerosis. Journal of Clinical Neurophysiology 18, 583591.CrossRefGoogle ScholarPubMed
Silva, M.F., Faria, P., Regateiro, F.S., Forjaz, V., Januario, C., Freire, A. & Castelo-Branco, M. (2005). Independent patterns of damage within magno, parvo- and koniocellular pathways in Parkinson's disease. Brain 128, 22602271.CrossRefGoogle ScholarPubMed
Simunovic, M.P., Votruba, M., Regan, B.C. & Mollon, J.D. (1998). Colour discrimination ellipses in patients with dominant optic atrophy. Vision Research 38, 34133419.CrossRefGoogle ScholarPubMed
Smithson, H.E. & Mollon, J.D. (2001). Forward and backward masking with brief chromatic stimuli. Color research and application 26, S165S169.3.0.CO;2-8>CrossRefGoogle Scholar
Travis, D. & Thompson, P. (1989). Spatiotemporal contrast sensitivity and colour vision in multiple sclerosis. Brain 112, 283303.CrossRefGoogle ScholarPubMed
Ventura, D.F., Costa, M.T.V., Costa, M.F., Berezovsky, A., Salomao, S.R., Simoes, A.L., Lago, M., Pereira, L.H.M.C., Faria, M.A.M., DeSouza, J.M. & Silveira, L.C.L. (2004). Multifocal and full-field electroretinogram changes associated with color-vision loss in mercury vapor exposure. Visual Neuroscience 21, 421429.CrossRefGoogle ScholarPubMed
Ventura, D.F., Costa, M.F., Gualtieri, M., Nishi, M., Bernick, M., Bonci, D. & DeSouza, J.M. (2003b). Early vision loss in diabetic patients assessed by the Cambridge Colour Test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 395408. New York: Oxford University Press Inc.CrossRefGoogle Scholar
Ventura, D.F., Gualtieri, M., Oliveira, A.G.F., Costa, M.F., Quiros, P., Salomao, S.R., Berezovsky, A., Sadun, F., Sadun, A.A. & Carelli, V. (2007). Male prevalence for color vision defects in Leber's hereditary optic neuropathy asymptomatic carriers of the 11778/ND4 mutation. Investigative Ophtalmology & Visual Science 48, 23622370.CrossRefGoogle Scholar
Ventura, D.F., Quiros, P., Carelli, V., Salomão, S.R., Gualtieri, M., Oliveira, A.F.G., Costa, M.F., Berezovsky, A., Sadun, F., De Negri, A.M. & Sadun, A.A. (2005a). Chromatic and luminance contrast sensitivities in asymptomatic carriers from a large Brazilian pedigree of 11778 Leber Hereditary Optic Neuropathy. Investigative Ophthalmology & Visual Science 46, 48094814.CrossRefGoogle ScholarPubMed
Ventura, D.F., Silveira, L.C.L., Nishi, M., Costa, M.F., Gualtieri, M., dos Santos, R.M.A., Pinto, C.T., de Moura, A.L.A., Rodrigues, A.R., Sakurada, C. & de Fatima, M. (2003c). Color vision loss in patients treated with chloroquine. Arquivos Brasileiros de Oftalmologia 66, 915.CrossRefGoogle Scholar
Ventura, D.F., Silveira, L.C., Rodrigues, A.R., de Souza, J., Gualtieri, M., Bonci, D.M. & Costa, M.F. (2003a). Preliminary norms for the Cambridge colour test. In Normal and Defective Colour Vision, ed. Mollon, J.D., Pokorny, J. & Knoblauch, K., pp. 331339. New York: Oxford University Press Inc.CrossRefGoogle Scholar
Ventura, D.F., Simoes, A.L., Tomaz, S., Costa, M.F., Lago, M., Costa, M.T.V., Canto-Pereira, L.H.M., de Souza, J.M., Faria, M.A.M. & Silveira, L.C.L. (2005b). Colour vision and contrast sensitivity losses of mercury intoxicated industry workers in Brazil. Environmental Toxicology and Pharmacology 19, 523529.CrossRefGoogle ScholarPubMed
Volpe, N.J. (2001). Optic neuritis: Historical aspects. Journal of Neuroophthalmology 21, 302309.CrossRefGoogle ScholarPubMed