Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T01:32:34.223Z Has data issue: false hasContentIssue false

Changing distribution of GABA-like immunoreactivity in pigeon visual areas during the early posthatching period and effects of retinal removal on tectal GABAergic systems

Published online by Cambridge University Press:  02 June 2009

Paola Bagnoli
Affiliation:
Department of Physiology and Biochemistry, University of Pisa, Via S.Zeno 31, 56100 Pisa, Italy
Gigliola Fontanesi
Affiliation:
Department of Physiology and Biochemistry, University of Pisa, Via S.Zeno 31, 56100 Pisa, Italy
Peter Streit
Affiliation:
Brain Research Institute, University of Zurich August-Forel-Strasse 1, CH-8029 Zurich, Switzerland
Luciano Domenici
Affiliation:
Institute of Neurophysiology CNR, Via S.Zeno 51, 56100 Pisa, Italy
Roberto Alesci
Affiliation:
Department of Physiology and Biochemistry, University of Pisa, Via S.Zeno 31, 56100 Pisa, Italy

Abstract

The distribution of GABA-like immunoreactivity in the pigeon visual system was studied during the first 9 days after hatching using a mouse monoclonal antibody, mAb 3A12, to glutaraldehyde linked GABA (Matute & Streit, 1986). GABA-like immunoreactivity was seen in cell bodies as well as in neuropil at the level of both the retina and central visual regions at any posthatching age. However, the distribution of putative GABAergic cells and processes varied with age reaching the adult pattern at around 9 days. As a general observation, almost no cell bodies in the retina (except for some perikarya in the ganglion cell layer) were labeled at hatching but densely packed immunostained processes were present in the inner plexiform layer. During the next few days, GABA-immunoreactive amacrine and horizontal cells appeared and the adult distribution of GABA-like immunoreactivity was reached at around 9 days. In the other visual regions examined, the general trend in the variation of GABA-like immunoreactivity included: (1) a progressive decrease in the density of immunostained cell bodies and (2) an almost parallel increase in the concentration of stained neuropil. Since in pigeons the adult organization of visual pathways and the final distribution putative GABAergic systems are reached at around the same age, we suggest the possibility that incoming ganglion cell axons play a role in regulating the distribution of GABA-like immunoreactivity in Visual areas. This hypothesis is supported by the fact that the distribution of GABA-like immunoreactivity in the superficial layers of the optic tectum was altered following ablation of the contralateral retina immediately after hatching.

Type
Research Articles
Copyright
Copyright © Cambridge University Press 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agardh, E., Bruun, A., Ehinger, B., Ekstrom, P., Van, Veen T., & Wu, J.Y. (1987). Gamma aminobutyric acid and glutamic acid decarboxylase immunoreactive neurons in the retina of different vertebrates. Journal of Comparative Neurology 258, 622630.CrossRefGoogle ScholarPubMed
Bagnoli, P., Casini, G., Fontanesi, G. & Sebastiani, L. (1989). Reorganization of visual pathways following posthatching removal of one retina in pigeons. Journal of Comparative Neurology 288, 512527.CrossRefGoogle ScholarPubMed
Bagnoli, P., Porciatti, V., Fontanesi, G., & Sebastiani, L. (1987). Morphological and functional changes in the retinotectal system of the pigeon during the early posthatching period. Journal of Comparative Neurology 256, 400411.CrossRefGoogle ScholarPubMed
Bagnoli, P., Erichsen, J.T., Fontanesi, G., & Alesci, R. (1989b). Modifications in the distribution of neuroactive substances in developing visual structures of the pigeon brain. Society for Neuroscience Abstracts 15, 1213.Google Scholar
Bagnoli, P., Porclatti, V., Lanfranchi, A., & Bedini, C., (1985). Developing pigeon retina: light evoked responses and ultrastructure of outer segments and synapses. Journal of Comparative Neurology 235, 384394.CrossRefGoogle ScholarPubMed
Brandon, C., (1985). Retinal GABA neurons: localization in vertebrate species using an antiserum to rabbit brain glutamate decarboxylase. Brain Resarch 344, 286295.CrossRefGoogle ScholarPubMed
Brantley, R.K., & Bass, A.H. (1988). Cholinergic in the brain of a teleost fish (Ponchthys notatus) located with a monoclonal to choline acetyltransferase. Journal of Comparative Neurology 275, 87105.CrossRefGoogle ScholarPubMed
Brauth, S.E., Kitt, C.A., Price, D.L., & Wainer, B.H., (1985). Cholinergic neurons in the telencephalon of the reptile Caiman crocodilus. Neuroscience Letters 58, 235240.CrossRefGoogle ScholarPubMed
Brecha, N., (1983). A review of retinal neurotransmitters: histochemical and biochemical studies. In Neurochemical Anatomy, ed. Emsom, P. C., pp. 85129. New York: Raven Press.Google Scholar
Celio, M., (1986). Parvalbumin in most γ-aminobutyric acid containing neurons in the rat cerebral cortex. Science 231, 995997.CrossRefGoogle ScholarPubMed
Cowan, W.M., Adamson, L., & Powell, T.P.S., (1961). An experimental study of the avian visual system. Journal of Anatomy 95, 545563.Google ScholarPubMed
Coyle, J.T., & Enna, S.J. (1976). Neurochemical aspects of the ontogenesis of GABAergic neurons and the rat brain. Brain Research 111, 119133.CrossRefGoogle Scholar
Cuenod, M., Bagnoli, P., Beaudet, A., Rustioni, A., Wiklund, L. & Streit, P., (1982). Transmitter-specific retrograde labeling of neurons. In Cytochemical Methods in Neuroanatomy, ed. Palay, V.C., & Palay, S.L., pp. 1744. New York: A.R. Liss.Google Scholar
Cuenod, M., & Streit, P. (1983). Neuronal tracing using retrograde migration of labeled transmitter-related compounds. In Methods in Chemical Neuroanatomy, ed. Bjorklund, A., & Hokfelt, T., pp. 365397. Amsterdam: Elsevier.Google Scholar
Curtis, E.M, & Stewart, M.G. (1986). Development of γ-aminobutyric acid immunoreactivity in chick hyperstriatum ventral and cerebellum: light and electron microscopical observations. Developmental Brain Research 30, 189199.CrossRefGoogle Scholar
Desan, P.H., Gruberg, E., Grewell, K., & Eckenstein, F. (1987). Cholinergic innervation of the optic tectum in the frog (Rana pipiens). Brain Research 413, 344349.CrossRefGoogle ScholarPubMed
Domenici, L., Waldvogel, H.J., Matute, C. & Streit, P. (1988). Distribution of GABA-like immunoreactivity in the pigeon brain. Neuroscience 25, 931950.CrossRefGoogle ScholarPubMed
Ekstrom, P., (1987). Distribution of choline acetyltransferase-immunoreactive neurons in the brain of a cyprinid teleost (Phoxinus phoxinus L.). Journal of Comparative Neurology 256, 494515.CrossRefGoogle ScholarPubMed
Hatten, M.E., Francois, A.M., Napolitano, E., & Roffler-Tarlov, S., (1984), Embryonic cerebellar neurons accumulate [3H]-γ-aminobutyric acid: visualization of developing γ-aminobutyric acid utilizing neurons in vitro and in vivo. Journal of Neuroscience 4, 13431353.CrossRefGoogle ScholarPubMed
Hendry, S.H.C., & Jones, E.G. (1986). Reduction in number of imminostained GABAergic neurons in deprived-eye dominance columns of monkey area 17. Nature 320, 750753.CrossRefGoogle Scholar
Henke, H. & Fonnum, F. (1976). Topographical and subcellular of choline acetyltransferase and glutamate decarboxylase in pigeon optic tectum.Journal of Neurochemistry 27, 387391.CrossRefGoogle ScholarPubMed
Hunt, S.P., Streit, P., Kunzie, H., &Cuenod, M. (1977). Characterization of the pigeon isthmotectal pathway by selective uptake and retrograde movement of radioactive compounds and by Golgi-like horseradish peroxidase labeling. Brain Research 129, 197212.CrossRefGoogle ScholarPubMed
Jeffery, G., (1984). Transneuronal effects of early eye removal on geniculo-cortical projection cells. Developmental Brain Research 13, 257263.CrossRefGoogle Scholar
Jong, Y.J., Thampy, K.G., & Barnes, E.M. Jr. (1986). Ontogeny of GABAergic neurons in chick brain: studies in vivo and in vitro. Developmental Brain Research 25, 8390.CrossRefGoogle Scholar
Karten, H.J., & Brecha, N. (1983). Localization of neuroactive substances in the vertebrate retina: evidence for lamination in the inner plexiform layer. Vision Research 23, 11971205.CrossRefGoogle ScholarPubMed
Karten, H.J. & Hodos, W.A. (1967). A Stereotaxic Atlas of the Brain of the pigeon. Baltimore: Johns Hopkins University press.Google Scholar
Kelly, J.S., & Dick, F. (1976). Differential labeling of glial cells and GABA-inhibitory interneurons and nerve terminals following the microinjection of [β-3H]-alanine, ]-DABA, and [3H]-GABA into single folia of the cerebellum. In Cold Spring Harbor Symposia on Quantitative Biology, Vol. XL. The Synapse. Cold Spring Harbor, New York, Cold Spring Harbor Laboratory, pp. 93106.Google Scholar
Kessler, J.A., Adler, J.E., Bohn, M.C., Blanck, I.B. (1981). substance p in principal sympathetic neurons:regulation by impulse activity. Science 214, 335336.CrossRefGoogle ScholarPubMed
Kisvarday, Z.F., Cowey, A., Hodgson, A.J., & Somogyi, P. (1986). The relationship between GABA immunoreactivity and labeling by local uptake [3H]-GABA in the striate cortex of the monkey. Experimental Brain Research 62, 8998.CrossRefGoogle ScholarPubMed
Lauder, J.M., Han, V.K.M., Henderson, P., Verdoorn, T., & Towle, A.C. (1986). Prenatal ontogeny of the GABAaergic system in the rat brain: an immunocytochemical study. Neuroscience 19, 465493.CrossRefGoogle Scholar
Leresche, N., Hardy, O., Audinat, E. & Jassik-Gerscheneeld, D. (1986). Synaptic organization of inhibitory circuits in the pigeon's optic tectum. Brain Research 365, 383387.CrossRefGoogle ScholarPubMed
Lewis, R.V., Stern, A.S., Kilpatrick, D.L., Gelber, L.D., Rossier, J., Stein, S., & Udenfrien, S., (1981). Maked increase in large enkephalin- containing polypeptides in rat adrenal gland following denervation. Journal of Neuroscience 1, 8082.CrossRefGoogle Scholar
Liu, C., Grandes, P., Matute, C., Cuenod, M., & Streit, P., (1989). Glutamate-like immunoreactivity revealed in rat olfactory bulb, hippocampus, and cerebellum by monoclonal antibody and sensitive staining method. Histochemistry 90, 427445.CrossRefGoogle ScholarPubMed
Marshall, J., & Voaden, M. (1974). An autoradiographic study of the cells accumulating [3H] -GABA in the isolated retinas of pigeons and chickens. Investigative Ophthalmology 13, 602607.Google ScholarPubMed
Matute, C., & Streit, p., (1986). Monoclonal antibodies demonstrating GABA-like immunoreactivity. Histochemistry 86, 147157.CrossRefGoogle ScholarPubMed
Maxwell, M.H., (1978). Two rapid and simple methods used for the removal of resins from 1.0-μm-thick epoxy sections. Journal of Microscopy 112, 253255.CrossRefGoogle ScholarPubMed
McLaughlin, B.J., Wood, J.G., Saito, K., Roberts, E., & Wu, J.Y. (1975). The fine structural localization of glutamate decarboxylase in developing axonal processes and presynaptic terminals of rodent cerebellum. Brain Research 85, 355371.CrossRefGoogle ScholarPubMed
Meyer, E.P., Matute, C., Streit, P., & Nessel, D.R. (1986). Insectoptic lobe neurons identifiable with monoclonal antibodies to GABA. Histochemistry 84, 207216.CrossRefGoogle ScholarPubMed
Mosinger, J., Studholme, K., & Yazulla, S. (1986).Immunocyto- chemical localization of GABA in the retina: a species comparison. Experimental Brain Research 42, 631644.Google Scholar
Mosinger, J.L., & Yazulla, S. (1985). Colocalization of GAD-like immunoreactivity and [3H] -GABA uptake in amacrine cells of rabbit retina. Journal of Comparative Neurology 240, 396406.CrossRefGoogle ScholarPubMed
Mosinger, J.L., & Yazulla, S. (1987). Double-label analysis of GAD- and GABA-like immunoreactivity in the rabbit retina. Vision Research 27 2330.CrossRefGoogle ScholarPubMed
Mugnalni, E., & Oertel, W.H. (1985). An atlas of the distribution of GABAergic neurons and terminals in the rat CNS as revealed by GAD immunohistochemistry. In Handbook of Chemical Neuroanatomy: GABA and Neuropeptides in the CNS, ed. Bjorklund, A., & Hokfelt, T., pp. 436608. Amsterdam: Elsevier.Google Scholar
Mulier, L.L., & Jacks, T.J. (1975). Rapid chemical dehydratation of samples for electron-microscopic examinations. Journal of Histochemistry and Cytochemistry 23, 107110.CrossRefGoogle Scholar
Neale, E.A., Oertel, W.H., Bowers, L.M., & Weise, V.K. (1983). Glutamate decarboxylase immunoreactivity and [3H]-GABA accumulation within the same neurons in dissociated cell cultures of cerebral cortex. Journal of Neuroscience 3, 376382.CrossRefGoogle ScholarPubMed
Nishimura, Y., Schwartz, M.L., & Rakic, P. (1985). Loccalization of γ-aminobutyric acid and glutamic acid decarboxylase in rhesus monkey retina. Brain Research 359, 351355.CrossRefGoogle ScholarPubMed
Oertel, W.H., Schmechel, D.E., & Mugnaini, E. (1983). Glutamic acid decarboxylase (GAD): purification, antiserum production, immunocytochemistry. In Current Methods in Cellular Neurobiology, ed. Barker, J.L, & McKelvy, J.F., pp. 63110. New York: John Wiley.Google Scholar
Oertel, W.H., Schmechel, D.E., Tappaz, M.L., & Kopin, I.J., (1981). Production of a specific antiserum to rat brain glutamic acid decarboxylase by injection of an antigen-complex. Neuroscience 6, 26892700.CrossRefGoogle Scholar
O'Kusky, J., & Colonnier, M., (1982). A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology 210, 278290.CrossRefGoogle ScholarPubMed
Osborne, N.N., (1987) Neurone-glia relationship in the retina: local ization of GABA uptake and endogenous GFAP and GABA immunoreactivities. In Glial-Neuronal Communication in Development and Regeneration, ed.Althans, H.H. & Scifert, W., pp. 118129. Berlin: NATO ASI Series, Springer-Verlage.Google Scholar
Osborne, N.N., Patel, S., Beaton, D.W., & Neuhoff, V., (1986). GABA neurons in retinas of different species and their postnatal development in situ and in culture in the rabbit retina. Cell and Tissue Research 243, 117123.CrossRefGoogle ScholarPubMed
Ottersen, O.P., Davanger, S. & Storm–Mathisen, J. (1987). Glycine-like immunoreactivity in the cerebellum of rat and senegalese baboon (Papio papio): a comparison with the distribution of GABA-like immunoreactivity and with [3H] -glycine and [3H] -GABA uptake. Experimental Brain Research 66, 211221.CrossRefGoogle ScholarPubMed
Parnavelas, J.G. & Cavanagh, M.E. (1988). Transient expression of neurotransmitters in the developing neocortex. Trends in Neuroscience 11, 9293.CrossRefGoogle ScholarPubMed
Porciatti, V., Bagnoli, P., Lanfranchi, A. & Bedini, C. (1985). Interaction between photoreceptors and pigment epithelium in developing pigeon retina: an electrophysiological and ultrastructural study. Documenta of Ophthalmology 60, 413419.CrossRefGoogle ScholarPubMed
Pourcho, R.G., Goebel, D.J. & McReynolds, J.S. (1984). Autoradiographic studies of [3H]-glycine, [3H]-GABA, and [3H]-muscimol uptake in the mudpuppy retina. Experimental Brain Research 39, 6981.Google Scholar
Reiner, A. & Karten, H.J. (1982). Laminar distribution of the cells of origin of the descending tectofugal pathways in the pigeon (Columba livia). Journal of Comparative Neurology 204, 165187.CrossRefGoogle ScholarPubMed
Ribak, C.E. & Robertson, R.T. (1986). Effects of neonatal monocular enucleation on the number of GAD-positive puncta in rat visual cortex. Experimental Brain Research 62, 203206.CrossRefGoogle ScholarPubMed
Schutzberg, M., Lundberg, J.M., Hokfelt, T., Terenius, L., Brandt, J., Elde, R.P. & Goldstein, M. (1978). Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neuroscience 3, 11691186.CrossRefGoogle Scholar
Seguela, P., Geffard, M., Buus, R.M. & Le, Moal M. (1984). Antibodies against γ-aminobutyric acid: specificity studies and immunocytochemical results. Proceedings of the National Academy of Sciences of the U.S.A. 81, 38883892.CrossRefGoogle ScholarPubMed
Somogyi, P., Hodgson, A.J., Chubbian, W., Penike, B. & Erdei, A. (1985). Antisera to γ-aminobutyric acid, II: Immunocytochemical application to the central nervous system. Journal of Histochemistry and Cytochemistry 33, 240248.CrossRefGoogle ScholarPubMed
Somogyi, P., Kisvarday, Z.F., Freud, T.F. & Cowey, A. (1984). Characterization by Golgi impregnation of neurons that accumulate [3H]-GABA in the visual cortex of monkey. Experimental Brain Research 52, 295303.Google Scholar
Sorenson, E.M., Parkinson, D., Dahl, J.L. & Chiappinelli, V.A. (1989). Immunohistochemical localization of choline acetyltransferase in the chicken mesencephalon. Journal of Comparative Neurology 281, 641657.CrossRefGoogle ScholarPubMed
Storm-Mathisen, J. (1975). High-affinity uptake of GABA in presumed GABAergic nerve endings in rat brain. Brain Research 84, 409427.CrossRefGoogle ScholarPubMed
Storm-Mathisen, J., Leknes, A.L., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.M.S. & Ottersen, O.P. (1983). First visualization of glutamate and GABAir neurons by immunocytochemistry. Nature 301, 517520.CrossRefGoogle Scholar
Streit, P., Knecht, E. & Cuenod, M. (1980). Transmitter-related retrograde labeling in the pigeon optic lobe; a high resolution auto- radiographic study. Brain Research 187, 5967.CrossRefGoogle Scholar
Tehrani, M.H.J. & Barnes, E.M. Jr, (1986). Ontogeny of GABA-receptor complex in chick brain: studies in vivo and in vitro. Developmental Brain Research 25, 9198.CrossRefGoogle Scholar
Vanselow, J., Thanos, S., Godement, P., Henke-Fahle, S. & Bonhoeffer, F. (1989). Spatial arrangement of radial glia and ingrowing retinal axons in the chick optic tectum during development. Developmental Brain Research 45, 1527.CrossRefGoogle ScholarPubMed
Watt, C.B., Su, Y.T. & Man-Krr, Lam D. (1984). Interactions between enkephalin and GABA in avian retina. Nature 311, 761763.CrossRefGoogle ScholarPubMed
Weibel, E.R. & Bolender, P. (1973). Stereological techniques for electron-microscopic morphometry. In Principles and Techniques of Electron Microscopy, ed. Hayat, M.A., pp. 237296. New York: Van Nostrand Reinhold.Google Scholar
Weibel, E.R. & Gomez, D.M. (1962). A principle for counting tissue structures on random sections. Journal Applied Physiology 17, 343348.CrossRefGoogle ScholarPubMed
Wolfensberger, M., Reubi, J.-C., Canzek, V., Redwek, U., Curtius, H.Ch. & Cuenod, M. (1981). Mass-fragmentographic determination of endogenous glycine and glutamic acid released in vivo from the pigeon optic tectum. Effect of electric stimulation of a midbrain nucleus. Brain Research 224, 327336.CrossRefGoogle ScholarPubMed
Wolff, J.R. (1981). Evidence for a dual role of GABA as a synaptic transmitter and a promoter of synaptogenesis. In Amino-Acid Neurotransmitters, ed. Defeudis, F.V. & Mandel, P., pp. 459466New York: Raven Press.Google Scholar
Wolff, J.R., Bottcher, H., Zetzsche, T., Oertel, W.H. & Chronwall, B.M. (1984). Development of GABAergic neurons in rat visual cortex as identified by glutamate decarboxylase-like immunoreactivity. Neuroscience Letters 47, 207212.CrossRefGoogle ScholarPubMed
Yang, C.-Y. & Yazulla, S. (1988). Localization of putative GABAergicnerons in the larval tiger salamander retina by immunocytochemical and autordiographic methods. Journal of Comparative Neurology 277, 96108.CrossRefGoogle Scholar
Yazulla, S., Studholme, K.M. & Wu, J.Y. (1986). Comparative distribution of [3H]-GABA uptake and GAD immunoreactivity in goldfish retinal amacrine cells: a double-label analysis. Journal of Comparative Neurology 244, 149162.CrossRefGoogle ScholarPubMed
Yu, B.C.-Y., Watt, C.B., Lam, D.M.K. & Fry, K.R. (1988). GABA-ergic ganglion cells in the rabbit retina. Brain Research 439, 376382.CrossRefGoogle Scholar
Zottoli, S.J., Rhodes, K.J., Corrodi, J.G. & Mufson, E.J. (1988). Putative cholinergic projections from the nucleus isthmi and the nucleus reticularis mesencephali to the optic tectum in the goldfish (Carassius auratus): a combined horseradish peroxidase transport and choline acetyltransferase immunohistochemical analysis. Journal of Comparative Neurology 273, 385398.CrossRefGoogle Scholar