Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T20:48:16.390Z Has data issue: false hasContentIssue false

Bayesian decision theory as a model of human visual perception: Testing Bayesian transfer

Published online by Cambridge University Press:  01 January 2009

LAURENCE T. MALONEY*
Affiliation:
Department of Psychology, New York University, New York, New York Center for Neural Science, New York University, New York, New York
PASCAL MAMASSIAN
Affiliation:
CNRS Laboratoire Psychologie de la Perception, Université Paris Descartes, Paris, France
*
*Address correspondence and reprint requests to: Laurence T. Maloney, Department of Psychology, New York University, 6 Washington Place, 2nd Floor, New York, NY 10003. E-mail: [email protected]

Abstract

Bayesian decision theory (BDT) is a mathematical framework that allows the experimenter to model ideal performance in a wide variety of visuomotor tasks. The experimenter can use BDT to compute benchmarks for ideal performance in such tasks and compare human performance to ideal. Recently, researchers have asked whether BDT can also be treated as a process model of visuomotor processing. It is unclear what sorts of experiments are appropriate to testing such claims and whether such claims are even meaningful. Any such claim presupposes that observers’ performance is close to ideal, and typical experimental tests involve comparison of human performance to ideal. We argue that this experimental criterion, while necessary, is weak. We illustrate how to achieve near-optimal performance in combining perceptual cues with a process model bearing little resemblance to BDT. We then propose experimental criteria termed transfer criteria that constitute more powerful tests of BDT as a model of perception and action. We describe how recent work in motor control can be viewed as tests of transfer properties of BDT. The transfer properties discussed here comprise the beginning of an operationalization (Bridgman, 1927) of what it means to claim that perception is or is not Bayesian inference (Knill & Richards, 1996). They are particularly relevant to research concerning natural scenes since they assess the ability of the organism to rapidly adapt to novel tasks in familiar environments or carry out familiar tasks in novel environments without learning.

Type
Natural Tasks and Plasticity
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, W.J., Graf, E.W. & Ernst, M. (2004). Experience can change the ‘light-from-above’ prior. Nature Neuroscience 7, 10571058.CrossRefGoogle ScholarPubMed
Ahumada, A.J. Jr (2002). Classification image weights and internal noise level estimation. Journal of Vision 2, 121131.CrossRefGoogle ScholarPubMed
Ahumada, A.J. Jr & Lovell, J. (1971). Stimulus features in signal detection. The Journal of the Acoustical Society of America 49, 17511756.CrossRefGoogle Scholar
Apostol, T.M. (1969). Calculus, Vol. II, 2nd edition. Waltham, MA: Xerox Press.Google Scholar
Backus, B.T. & Banks, M.S. (1999). Estimator reliability and distance scaling in stereoscopic slant perception. Perception 28, 217242.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1972). Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1, 371394.CrossRefGoogle ScholarPubMed
Barlow, H.B. (1995). The neuron doctrine in perception. In The Cognitive Neurosciences, ed. Gazzaniga, M., Chapter 26, pp. 415435. Cambridge, MA: MIT Press.Google Scholar
Berger, J.O. (1985). Statistical Decision Theory and Bayesian Analysis. New York: Springer.CrossRefGoogle Scholar
Berger, J.O. & Wolpert, R.L. (1988). The Likelihood Principle: A Review, Generalizations, and Statistical Implications, Lecture Notes—Monograph Series, Vol. 6, 2nd edition. Hayward, CA: Institute of Mathematical Statistics.CrossRefGoogle Scholar
Blackwell, D. & Girshick, M.A. (1954). Theory of Games and Statistical Decisions. New York: Wiley.Google Scholar
Bridgman, P. (1927). The Logic of Modern Physics. New York: MacMillan.Google Scholar
Duda, R.O., Hart, P.E. & Stork, D.G. (2000). Pattern Classification, 2nd edition. New York: Wiley.Google Scholar
Ernst, M.O. & Banks, M.S. (2002). Humans integrate visual and haptic information in a statistically optimal fashion. Nature 415, 429433.CrossRefGoogle Scholar
Feller, W. (1968). An Introduction to Probability Theory and its Applications, Vol. I, 3rd edition. New York: Wiley.Google Scholar
Ferguson, T.S. (1967). Mathematical Statistics: A Decision Theoretic Approach. New York: Academic Press.Google Scholar
Geisler, W. (1989). Sequential ideal-observer analysis of visual discrimination. Psychological Review 96, 267314.CrossRefGoogle Scholar
Gelman, A., Carlin, J.B., Stern, H.S. & Rubin, D.B. (2003). Bayesian Data Analysis, 2nd edition. Boca Raton, FL: Chapman & Hall/CRC.CrossRefGoogle Scholar
Green, D.M. & Swets, J.A. (1966/1974). Signal Detection Theory and Psychophysics. New York: Wiley. Reprinted 1974, New York: Krieger.Google Scholar
Hudson, T.E., Maloney, L.T. & Landy, M.S. (2008). Optimal Compensation for Temporal Uncertainty in Movement Planning. PLoS Comput Biol 4(7): e1000130.CrossRefGoogle ScholarPubMed
Jaynes, E.T. (2003). Probability Theory: The Logic of Science. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Jordan, M.I. & Jacobs, R.A. (1994). Hierarchical mixtures of experts and the EM algorithm. Neural Computation 6, 181214.CrossRefGoogle Scholar
Knill, D.C. & Richards, W., ed. (1996). Perception as Bayesian Inference. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Krantz, D.H., Luce, R.D., Suppes, P. & Tversky, A. (1971). Foundations of Measurement (Vol. 1): Additive and Polynomial Representation. New York: Academic Press.Google Scholar
Landy, M.S., Maloney, L.T., Johnston, E.B. & Young, M. (1995). Measurement and modeling of depth cue combination: In defense of weak fusion. Vision Research 35, 389412.CrossRefGoogle ScholarPubMed
Mackintosh, N. (1974). The Psychology of Animal Learning. New York: Academic Press.Google Scholar
Maloney, L.T. (2002). Statistical decision theory and biological vision. In Perception and the Physical World: Psychological and Philosophical Issues in Perception, ed. Heyer, D. & Mausfeld, R., pp. 145189. New York: Wiley.CrossRefGoogle Scholar
Mamassian, P. (2008). Overconfidence in an objective anticipatory motor task. Psychological Science 19, 601606.CrossRefGoogle Scholar
Mamassian, P., Landy, M.S. & Maloney, L.T. (2002). Bayesian modeling of visual perception. In Probabilistic Models of the Brain: Perception and Neural Function, ed. Rao, R., Lewicki, M. & Olshausen, B., pp. 1336. Cambridge, MA: MIT Press.CrossRefGoogle Scholar
Meila, M. & Jordan, M.I. (1996). Markov mixtures of experts. In Murray-Smith, R. & Johanssen, T.A. [eds.] (1996). Multiple Model Approaches to Nonlinear Modelling and Control, pp. 145166. London: Taylor and Francis.Google Scholar
Najemnik, J. & Geisler, W.S. (2005). Optimal eye movement strategies in visual search. Nature 434, 387391.CrossRefGoogle ScholarPubMed
Neisser, U. (1976). Cognition and Reality. San Francisco, CA: W.H. Freeman & Co.Google Scholar
O’Hagan, A. (1994). Kendall's Advanced Theory of Statistics: Volume 2B: Bayesian Inference. New York: Halsted Press (Wiley).Google Scholar
Oruç, I, Maloney, L.T. & Landy, M.S. (2003). Weighted linear cue combination with possibly correlated error. Vision Research 43, 24512468.CrossRefGoogle ScholarPubMed
Riesz, F. (1907). Sur une espèce de géometrie analytiques des systèmes de fonctions sommable. Comptes rendus de l’Académie des Sciences (Paris) 144, 14091411.Google Scholar
Riesz, F. (1909). Sur les operations fonctionelles linéaires. Comptes rendus de l’Académie des Sciences (Paris) 149, 974977.Google Scholar
Rudin, W. (1966). Real and Complex Analysis, 3rd edition. New York: McGraw-Hill.Google Scholar
Shimojo, S. & Nakayama, K. (1992). Experiencing and perceiving visual surfaces. Science 257, 13571363.Google Scholar
Trommershäuser, J., Maloney, L.T. & Landy, M.S. (2003 a). Statistical decision theory and rapid, goal-directed movements. Journal of the Optical Society A 20, 14191433.CrossRefGoogle ScholarPubMed
Trommershäuser, J., Maloney, L.T. & Landy, M.S. (2003 b). Statistical decision theory and tradeoffs in motor response. Spatial Vision 16, 255275.Google ScholarPubMed
Trommershäuser, J., Maloney, L.T. & Landy, M.S. (2008). Decision making, movement planning and statistical decision theory. Trends in Cognitive Science 12(8), 291297.CrossRefGoogle ScholarPubMed
von Neumann, J. & Morgenstern, O. (1944/1953). Theory of Games and Economic Behavior, 3rd edition. Princeton, NJ: Princeton University Press.Google Scholar
Yuille, A.L. & Rangarajan, A. (2003). The concave-convex procedure. Neural Computation 15, 915936.CrossRefGoogle ScholarPubMed