Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-19T09:44:21.691Z Has data issue: false hasContentIssue false

Animal models of amblyopia

Published online by Cambridge University Press:  16 April 2018

DONALD MITCHELL*
Affiliation:
Department of Psychology and Neuroscience, Dalhousie University, Halifax, NS, Canada
FRANK SENGPIEL
Affiliation:
School of Biosciences and Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, Wales, UK
*
*Address correspondence to: Donald Mitchell. E-mail: [email protected]

Abstract

Unquestionably, the last six decades of research on various animal models have advanced our understanding of the mechanisms that underlie the many complex characteristics of amblyopia as well as provided promising new avenues for treatment. While animal models in general have served an important purpose, there nonetheless remain questions regarding the efficacy of particular models considering the differences across animal species, especially when the goal is to provide the foundations for human interventions. Our discussion of these issues culminated in three recommendations for future research to provide cohesion across animals models as well as a fourth recommendation for acceptance of a protocol for the minimum number of steps necessary for the translation of results obtained on particular animal models to human clinical trials. The three recommendations for future research arose from discussions of various issues including the specific results obtained from the use of different animal models, the degree of similarity to the human visual system, the ability to generate animal models of the different types of human amblyopia as well as the difficulty of scaling developmental timelines between different species.

Type
Perspective
Copyright
Copyright © Cambridge University Press 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baroncelli, L., Braschi, C. & Maffei, L. (2013). Visual depth perception in normal and deprived rats: Effects of environmental enrichment. Neuroscience 236, 313319.CrossRefGoogle ScholarPubMed
Berkley, M.A., Kitterle, F. & Watkins, D.W. (1975). Grating visibility as a function of orientation and retinal eccentricity. Vision Research 15, 239244.CrossRefGoogle ScholarPubMed
Birch, D. & Jacobs, G.H. (1979). Spatial contrast sensitivity in albino and pigmented rats. Vision Research 19, 933937.CrossRefGoogle ScholarPubMed
Bisti, S. & Maffei, L. (1974). Behavioural contrast sensitivity of the cat in various visual meridians. Journal of Physiology 241, 201210.CrossRefGoogle ScholarPubMed
Chino, Y.M., Smith, E.L., Yoshida, K., Cheng, H. & Hamamoto, J. (1994). Binocular interactions in striate cortical neurons of cats reared with discordant visual inputs. Journal of Neuroscience 14, 50505067.CrossRefGoogle ScholarPubMed
Cleland, B.G., Harding, T.H. & Tulunay-Keesey, U. (1979). Visual resolution and receptive field size: Examination of two kinds of cat retinal ganglion cells. Science 205, 10151017.CrossRefGoogle Scholar
Cyranoski, D. (2014). Marmosets are stars of Japan’s ambitious brain project. Nature 514, 151152.CrossRefGoogle ScholarPubMed
De Valois, R.L., Morgan, H. & Snodderly, D.M. (1974). Psychophysical studies of monkey vision III. Spatial luminance contrast sensitivity tests of macaque and human observers. Vision Research 14, 7581.CrossRefGoogle Scholar
Douglas, R.M., Neve, A., Quittenbaum, J.P., Alam, N.M. & Prusky, G.T. (2006). Perception of visual motion coherence by rats and mice. Vision Research 46, 28422847.CrossRefGoogle ScholarPubMed
Duffy, K.R. & Mitchell, D.E. (2013). Darkness alters maturation of visual cortex and promotes fast recovery from prior monocular deprivation. Current Biology 23, 382386.CrossRefGoogle Scholar
Duffy, K.R., Lingley, A.J., Holman, K.D. & Mitchell, D.E. (2016). Susceptibility to monocular deprivation following immersion in darkness either late into or beyond the critical period. Journal of Comparative Neurology 524, 26432653.CrossRefGoogle ScholarPubMed
Fong, M-f., Mitchell, D.E., Duffy, K.R. & Bear, M.F. (2016). Rapid recovery from the effects of early monocular deprivation is enabled by temporary inactivation of the retinas. Proceedings of the National Academy of Sciences USA 113, 1413914144.CrossRefGoogle ScholarPubMed
Fonta, C., Chappert, C. & Imbert, M. (2000). Effect of monocular deprivation on NMDAR1 immunostaining in ocular dominance columns of the marmoset Callithrix jacchus. Visual Neuroscience 17, 345352.CrossRefGoogle ScholarPubMed
Giffin, F. & Mitchell, D.E. (1978). The rate of recovery of vision after early monocular deprivation in kittens. Journal of Physiology 274, 511537.CrossRefGoogle ScholarPubMed
Greifzu, F., Pielecka-Fortuna, J., Kalogeraki, E., Krempler, K., Favaro, P.D., Schlüter, O.M. & Löwel, S. (2014). Environmental enrichment extends ocular dominance plasticity into adulthood and protects from stroke-induced impairments. Proceedings of the National Academy of Sciences USA 111(3), 11501155.CrossRefGoogle ScholarPubMed
Guire, E.S., Lickey, M.E. & Gordon, B. (1999). Critical period for the monocular deprivation effect on rats: Assessment with sweep visually evoked potentials. Journal of Neurophysiology 81, 121128.CrossRefGoogle ScholarPubMed
Harwerth, R.S., Smith, E.L., Boltz, R.L., Crawford, M.L.J. & Non Noorden, G.K. (1983). Behavioral studies on the effect of abnormal early visual experience in monkeys: Spatial modulation sensitivity. Vision Research 23, 15011510.CrossRefGoogle ScholarPubMed
He, Y., Ray, B., Dennis, K. & Quinlan, E.M. (2007). Experience-dependent recovery of vision following chronic deprivation amblyopia. Nature Neuroscience 10, 11341136.CrossRefGoogle ScholarPubMed
Holman, K., Duffy, K.R. & Mitchell, D.E. (2017). Short periods of darkness fail to restore visual or neural plasticity of adult cats. Visual Neuroscience (in press).Google Scholar
Howard, I.P. (2002). Seeing in depth. In Basic Mechanisms, Vol. 1, pp. 531550. Toronto: I. Porteous.Google Scholar
Kiorpes, L. (1992). Development of vernier acuity and grating acuity in normally reared monkeys. Visual Neuroscience 9, 243251.CrossRefGoogle ScholarPubMed
Maya-Vetencourt, J.F., Sale, A., Viegi, A., Baroncelli, L., De Pasquale, R., O’Leary, O.F., Castren, E. & Maffei, L. (2008). The antidepressant fluoxetine restores plasticity in the adult visual cortex. Science 320, 385388.CrossRefGoogle ScholarPubMed
Mitchell, D.E. (1988). The extent of visual recovery from early monocular or binocular visual deprivation in kittens. Journal of Physiology 395, 639660.CrossRefGoogle ScholarPubMed
Mitchell, D.E., Cynader, M. & Movshon, J.A. (1977). Recovery from the effects of monocular deprivation in kittens. Journal of Comparative Neurology 176, 5364.CrossRefGoogle ScholarPubMed
Mitchell, D.E., Gingras, G. & Kind, P.C. (2001). Initial recovery of vision after early monocular deprivation in kittens is faster when both eyes are open. Proceedings of the National Academy of Sciences USA 98, 1166211667.CrossRefGoogle ScholarPubMed
Mitchell, J.F. & Leopold, D.A. (2015). The marmoset monkey as a model for visual neuroscience. Neuroscience Research 93, 2046.CrossRefGoogle Scholar
Mitchell, D.E., MacNeil, K., Crowder, N.A., Holman, K. & Duffy, K.R. (2016). The recovery of visual functions in amblyopic felines following brief exposure to total darkness. Journal of Physiology 594, 149167.CrossRefGoogle ScholarPubMed
Murphy, K.M. & Mitchell, D.E. (1999). Vernier acuity of normal and visually deprived cats. Vision Research 31, 253266.CrossRefGoogle Scholar
Nakayama, K. & Mackeben, M. (1982). Steady state visual evoked potentials in the alert primate. Vision Research 22, 12611271.CrossRefGoogle ScholarPubMed
Norcia, A.M., Applebaum, L.G., Ales, J.M., Cottereau, B.R. & Rossion, B. (2015). The steady-state visual evoked potential in vision research: A review. Journal of Vision 15, 4, 146.CrossRefGoogle ScholarPubMed
O’Dell, C. & Boothe, R.G. (1997). The development of stereoacuity in infant rhesus monkeys. Vision Research 37, 26752684.CrossRefGoogle ScholarPubMed
Pasternak, T. & Horn, K. (1991). Spatial vision of the cat: Variation with eccentricity. Visual Neuroscience 6, 151158.CrossRefGoogle ScholarPubMed
Pietrasanta, M., Restani, L., Cerri, C., Olcese, U., Medini, P. & Caleo, M. (2014). A switch from inter-ocular to inter-hemispheric suppression following monocular deprivation in the rat visual cortex. European Journal of Neuroscience 40, 22832292.CrossRefGoogle ScholarPubMed
Pizzorusso, T., Medini, P., Landi, S., Baldini, S., Berardi, N. & Maffei, L. (2006). Structural and functional recovery from early monocular deprivation in adult rats. Proceedings of the National Academy of Sciences USA 103, 85178522.CrossRefGoogle ScholarPubMed
Prusky, G.T. & Douglas, R.M. (2003). Developmental plasticity of mouse visual acuity. European Journal of Neuroscience 17, 167173.CrossRefGoogle ScholarPubMed
Prusky, G.T., West, P.W. & Douglas, R.M. (2000). Experience-dependent plasticity of visual acuity in rats. European Journal of Neuroscience 12, 37813786.CrossRefGoogle ScholarPubMed
Ribic, A., Flugge, G., Schlumbohm, C., Matz-Rensing, K., Walter, L. & Fuchs, E. (2011). Activity-dependent regulation of MHC class I expression in the developing primary visual cortex of the common marmoset monkey. Behavioral and Brain Functions 7, 1.CrossRefGoogle ScholarPubMed
Roe, A.W., Fritsches, K. & Pettigrew, J.D. (2005). Optical imaging of functional organization of V1 and V2 in marmoset visual cortex. Anat Rec-Part A Discoveries in in Molecular, Cellular, and Evolutionary Biology 287, 12131225.CrossRefGoogle ScholarPubMed
Sasaki, E., Suemizu, H., Shimada, A., Hanazawa, K., Oiwa, R., Kamioka, M., Tomioka, I., Sotomaru, Y., Hirakawa, R., Eto, T., Shiozawa, S., Maeda, T., Ito, M., Ito, R., Kit, C., Yaihashi, C., Kawai, K., Miyoshi, H., Tanioka, Y., Tamaoki, N., Habu, S., Okano, H., Nomura, T. (2009). Generation of transgenic non-human primates with germline transmission. Nature 459, 523527.CrossRefGoogle ScholarPubMed
Sawtell, N.B., Frenkel, M.Y., Philpot, B.D., Nakazawa, K., Tonegawa, S. & Bear, M.F. (2003). NMDA receptor-dependent ocular dominance plasticity in adult visual cortex. Neuron 38, 977985.CrossRefGoogle ScholarPubMed
Scholl, B., Burge, J. & Priebe, N.J. (2013). Binocular integration and disparity selectivity in mouse primary visual cortex. Journal of Neurophysiology 109, 30133024.CrossRefGoogle ScholarPubMed
Sengpiel, F., Blakemore, C., Kind, P.C. & Harrad, R. (1994). Interocular suppression in the visual cortex of strabismic cats. Journal of Neuroscience 14, 68556871.CrossRefGoogle ScholarPubMed
Sengpiel, F. & Blakemore, C. (1996). The neural basis of suppression and amblyopia in strabismus. Eye 10, 250258.CrossRefGoogle ScholarPubMed
Sengpiel, F., Troilo, D., Kind, P.C., Graham, B. & Blakemore, C. (1996). Functional architecture of area 17 in normal and monocularly deprived marmosets (Callithrix jacchus). Visual Neuroscience 13, 145160.CrossRefGoogle ScholarPubMed
Seymoure, J.M. & Juraska, J.M. (1997). Vernier and grating acuity in adult hooded rats: The influence of sex. Behavioral Neuroscience 111, 792800.CrossRefGoogle ScholarPubMed
Smith, E.L. III, Chino, Y.M., Ni, J., Cheng, H., Crawford, M.L. & Harwerth, R.S. (1997). Residual binocular interactions in the striate cortex of monkeys reared with abnormal binocular vision. Journal of Neurophysiology 78, 13531362.CrossRefGoogle ScholarPubMed
Solomon, S.G. & Rosa, M.G.P. (2014). A simpler primate brain: The visual system of the marmoset monkey. Frontiers in Neural Circuits 8, 96.CrossRefGoogle ScholarPubMed
Tardiff, S.D., Smucny, D.A., Abbott, D.H., Mansfield, K., Schultz-Darken, N. & Yamamoto, M.E. (2003). Reproduction in captice common marmosets (Callithrix jacchus). Comparative Medicine 53, 364368.Google Scholar
Vorobyov, K., Kwok, J.C., Fawcett, J.W. & Sengpiel, F. (2013). Effects of digesting chondroitin sulfate proteoglycans on plasticity in cat visual cortex. Journal of Neuroscience 33, 234243.CrossRefGoogle Scholar
Wallace, D.J., Greenberg, D.S., Sawinski, J., Rull, S., Notaro, G. & Kerr, J.N.D. (2013). Rats maintain an overhead binocular field at the expense of constant fusion. Nature 498, 6568.CrossRefGoogle ScholarPubMed
Wang, Q., Sporns, O. & Burkhalter, A. (2012). Network analysis of corticocortical connections reveals ventral and dorsal processing streams in mouse visual cortex. Journal of Neuroscience 32, 43864399.CrossRefGoogle ScholarPubMed
Xu, P.I., Tian, C., Zhang, Y., Jing, W., Wang, Z., Liu, T., Hu, J., Tian, Y., Xia, Y. & Yao, D. (2013). Cortical network properties revealed by SSVEP in anesthetized rats. Scientific Reports 3, 2496.CrossRefGoogle ScholarPubMed
Yeritsyan, N., Lehmann, K., Puk, O., Graw, J. & Löwel, S. (2012). Visual capabilities and cortical maps in BALB/c mice. European Journal of Neuroscience 36, 28012811.CrossRefGoogle ScholarPubMed