Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T14:17:59.614Z Has data issue: false hasContentIssue false

A Genomewide Association Study of Nicotine and Alcohol Dependence in Australian and Dutch Populations

Published online by Cambridge University Press:  21 January 2016

Penelope A. Lind
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Stuart Macgregor
Affiliation:
Queensland Statistical Genetics, Queensland Institute of Medical Research, Brisbane, Australia
Jacqueline M. Vink
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
Michele L Pergadia
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
Narelle K. Hansell
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Marleen H. M. de Moor
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
August B. Smit
Affiliation:
Department of Molecular and Cellular Neurobiology, VU University, Amsterdam, Netherlands
Jouke-Jan Hottenga
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
Melinda M. Richter
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Andrew C. Heath
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA
Nicholas G. Martin
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Gonneke Willemsen
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
Eco J. C. de Geus
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
Nicole Vogelzangs
Affiliation:
Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, Netherlands
Brenda W. Penninx
Affiliation:
Department of Psychiatry and EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, Netherlands
John B. Whitfield
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Grant W. Montgomery
Affiliation:
Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
Dorret I. Boomsma
Affiliation:
Department of Biological Psychology, VU University, Amsterdam, Netherlands
Pamela A. F. Madden
Affiliation:
Department of Psychiatry, Washington University School of Medicine, St Louis, MO, USA

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Persistent tobacco use and excessive alcohol consumption are major public health concerns worldwide. Both alcohol and nicotine dependence (AD, ND) are genetically influenced complex disorders that exhibit a high degree of comorbidity. To identify gene variants contributing to one or both of these addictions, we first conducted a pooling-based genomewide association study (GWAS) in an Australian population, using Illumina Infinium 1M arrays. Allele frequency differences were compared between pooled DNA from case and control groups for: (1) AD, 1224 cases and 1162 controls; (2) ND, 1273 cases and 1113 controls; and (3) comorbid AD and ND, 599 cases and 488 controls. Secondly, we carried out a GWAS in independent samples from the Netherlands for AD and for ND. Thirdly, we performed a meta-analysis of the 10, 000 most significant AD- and ND-related SNPs from the Australian and Dutch samples. In the Australian GWAS, one SNP achieved genomewide significance (p < 5 x 10-8) for ND (rs964170 in ARHGAPlOon chromosome 4, p = 4.43 x 10”8) and three others for comorbid AD/ND (rs7530302 near MARK1 on chromosome 1 (p = 1.90 x 10-9), rs1784300 near DDX6 on chromosome 11 (p = 2.60 x 10-9) and rs12882384 in KIAA1409 on chromosome 14 (p = 4.86 x 10-8)). None of the SNPs achieved genomewide significance in the Australian/Dutch meta-analysis, but a gene network diagram based on the top-results revealed overrepre-sentation of genes coding for ion-channels and cell adhesion molecules. Further studies will be requirec before the detailed causes of comorbidity between AC and ND are understood.

Type
Articles
Copyright
Copyright © Cambridge University Press 2010

References

Alarcon, M., Abrahams, B. S., Stone, J. L., Duvall, J. A., Perederiy, J. V., Bomar, J. M., Sebat, J., Wigler, M., Martin, C. L., Ledbetter, D. H., Nelson, S. E., Cantor, R. M., & Geschwind, D. H. (2008). Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. American journal of Human Genetics, 82, 150159.Google Scholar
Arking, D. E., Cutler, D. J., Brune, C. W., Teslovich, T. M., West, K., Ikeda, M., Rea, A., Guy, M., Lin, S., Cook, E. H., & Chakravarti, A. (2008). A common genetic variant in the neurexin superfamily member CNTNAP2 increases familial risk of autism. American Journal of Human Genetics, 82, 160164.CrossRefGoogle ScholarPubMed
Basseres, D. S., Tizzei, E. V., Duarte, A. A., Costa, F. E., & Saad, S. T. (2002). ARHGAP10, a novel human gene coding for a potentially cytoskeletal Rho-GTPase activating protein. Biochemical and Biophysical Research Communications, 294, 579585.CrossRefGoogle ScholarPubMed
Bice, P., Valdar, W., Zhang, L., Liu, L., Lai, D., Grahame, N., Flint, J., Li, T. K., Lumeng, L., & Foroud, T. (2009). Genomewide SNP screen to detect quantitative trait Loci for alcohol preference in the high alcohol preferring and low alcohol preferring mice. Alcoholism: Clinical and Experimental Research, 33, 531537.CrossRefGoogle ScholarPubMed
Bierut, L. J., Madden, P. A., Breslau, N., Johnson, E. O., Hatsukami, D., Pomerleau, O. E., Swan, G. E., Rutter, J., Bertelsen, S., Fox, L., Fugman, D., Goate, A. M., Hinrichs, A. L., Konvicka, K., Martin, N. G., Montgomery, G. W., Saccone, N. L., Saccone, S. F., Wang, J. C., Chase, G. A., Rice, J. P., & Ballinger, D. G. (2007). Novel genes identified in a high-density genome wide association study for nicotine dependence. Human Molecular Genetics, 16, 2435.CrossRefGoogle Scholar
Boomsma, D. I., de Geus, E. J., Vink, J. M., Stubbe, J. H., Distel, M. A., Hottenga, J. J., Posthuma, D., van Beijsterveldt, T. C., Hudziak, J. J., Bartels, M., & Willemsen, G. (2006). Netherlands Twin Register: from twins to twin families. Twin Research & Human Genetics, 9, 849857.CrossRefGoogle ScholarPubMed
Boomsma, D. I., Willemsen, G., Sullivan, P. F., Heutink, P., Meijer, P., Sondervan, D., Kluft, C., Smit, G., Nolen, W. A., Zitman, F. G., Smit, J. H., Hoogendijk, W. J., van Dyck, R., de Geus, E. J., & Penninx, B. W. (2008). Genome-wide association of major depression: Description of samples for the GAIN Major Depressive Disorder Study: NTR and NESDA biobank projects. European Journal of Human Genetics, 16, 335342.CrossRefGoogle ScholarPubMed
Brown, K. M., Macgregor, S., Montgomery, G. W., Craig, D. W., Zhao, Z. Z., Iyadurai, K., Henders, A. K., Homer, N., Campbell, M. J., Stark, M., Thomas, S., Schmid, H., Holland, E. A., Gillanders, E. M., Duffy, D. L., Maskiell, J. A., Jetann, J., Ferguson, M., Stephan, D. A., Cust, A. E., Whiteman, D., Green, A., Olsson, H., Puig, S., Ghiorzo, P., Hansson, J., Demenais, F., Goldstein, A. M., Gruis, N. A., Elder, D. E., Bishop, J. N., Kefford, R. F., Giles, G. G., Armstrong, B. K., Aitken, J. E., Hopper, J. L., Martin, N. G., Trent, J. M., Mann, G. J., & Hayward, N. K. (2008). Common sequence variants on 20qll.22 confer melanoma susceptibility. Nature Genetics, 40, 838840.CrossRefGoogle ScholarPubMed
Bucholz, K. K., Cadoret, R., Cloninger, C. R., Dinwiddie, S. H., Hesselbrock, V. M., Nurnberger, J. I. Jr., Reich, T., Schmidt, I., & Schuckit, M. A. (1994). A new, semi-structured psychiatric interview for use in genetic linkage studies: a report on the reliability of the SSAGA. Journal of Studies on Alcohol, 55, 149158.Google Scholar
Butt, C. M., Hutton, S. R., Stitzel, J. A., Balogh, S. A., Owens, J. C., & Collins, A. C. (2003). A polymorphism in the alpha4 nicotinic receptor gene (Chrna4) modulates enhancement of nicotinic receptor function by ethanol. Alcoholism: Clinical and Experimental Research, 27, 733742.CrossRefGoogle Scholar
Butt, C. M., King, N. M., Stitzel, J. A., & Collins, A. C. (2004). Interaction of the nicotinic cholinergic system with ethanol withdrawal. Journal of Pharmacology Experimental Therapy, 308, 591599.Google Scholar
Caporaso, N., Gu, F., Chatterjee, N., Sheng-Chih, J., Yu, K., Yeager, M., Chen, C., Jacobs, K., Wheeler, W., Landi, M. T., Ziegler, R. G., Hunter, D. J., Chanock, S., Hankinson, S., Kraft, P., & Bergen, A. W. (2009). Genome-wide and candidate gene association study of cigarette smoking behaviors. PLoS ONE, 4, e4653.CrossRefGoogle ScholarPubMed
Chen, Q., He, G., Wu, S., Xu, Y., Feng, G., Li, Y., Wang, L., & He, L. (2005). A case-control study of the relationship between the metabotropic glutamate receptor 3 gene and schizophrenia in the Chinese population. Schizophrenia Research, 73, 2126.Google Scholar
Cottier, L. B., Robins, L. N., Grant, B. F., Blaine, J., Towle, L. H., Wittchen, H. U., & Sartorius, N. (1991). The CIDI-core substance abuse and dependence questions: cross-cultural and nosological issues. The WHO/ADAMHA Field Trial. British Journal of Psychiatry, 159, 653658.Google Scholar
Davies, A. G., Pierce-Shimomura, J. T., Kim, H., VanHoven, M. K., Thiele, T. R., Bonci, A., Bargmann, C. I., & Mclntire, S. L. (2003). A central role of the BK potassium channel in behavioral responses to ethanol in C. elegans. Cell, 115, 655666.Google Scholar
de Leon, J., Diaz, F. J., Rogers, T., Browne, D., & Dinsmore, L. (2002). Initiation of daily smoking and nicotine dependence in schizophrenia and mood disorders. Schizophrenia Research, 56, 4754.CrossRefGoogle ScholarPubMed
Drgon, T., Montoya, I., Johnson, C., Liu, Q. R., Walther, D., Hamer, D., & Uhl, G. R. (2009). Genome-wide association for nicotine dependence and smoking cessation success in NIH research volunteers. Molecular Medicine, 15, 2127.CrossRefGoogle ScholarPubMed
Egan, M. E., Straub, R. E., Goldberg, T. E., Yakub, I., Callicott, J. H., Hariri, A. R., Mattay, V. S., Bertolino, A., Hyde, T. M., Shannon-Weickert, C., Akil, M., Crook, J., Vakkalanka, R. K., Balkissoon, R., Gibbs, R. A., Kleinman, J. E., & Weinberger, D. R. (2004). Variation in GRM3 affects cognition, prefrontal glutamate, and risk for schizophrenia. Proceedings of the Natural Academy of Science, USA, 101, 1260412609.Google Scholar
Ewing, J. A. (1984). Detecting alcoholism. The CAGE questionnaire. Jama, 252, 19051907.CrossRefGoogle ScholarPubMed
Fallin, M. D., Lasseter, V. K., Avramopoulos, D., Nicodemus, K. K., Wolyniec, P. S., McGrath, J. A., Steel, G., Nestadt, G., Liang, K. Y., Huganir, R. L., Valle, D., & Pulver, A. E. (2005). Bipolar I disorder and schizophrenia: A 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. American Journal of Human Genetics, 77, 918936.CrossRefGoogle ScholarPubMed
Friedman, J. I., Vrijenhoek, T., Markx, S., Janssen, I. M., van der Vliet, W. A., Faas, B. H., Knoers, N. V., Cahn, W., Kahn, R. S., Edelmann, L., Davis, K. L., Silverman, J. M., Brunner, H. G., van Kessel, A. G., Wijmenga, C., Ophoff, R. A., & Veltman, J. A. (2008). CNTNAP2 gene dosage variation is associated with schizophrenia and epilepsy. Molecular Psychiatry, 13, 261266.CrossRefGoogle Scholar
Fujii, Y., Shibata, H., Kikuta, R., Makino, C., Tani, A., Hirata, N., Shibata, A., Ninomiya, H., Tashiro, N., & Fukumaki, Y. (2003). Positive associations of polymorphisms in the metabotropic glutamate receptor type 3 gene (GRM3) with schizophrenia. Psychiatric Genetics, 13, 7176.CrossRefGoogle ScholarPubMed
Gelernter, J., & Kranzler, H. R. (2009). Genetics of alcohol dependence. Human Genetics, 126, 9199.CrossRefGoogle ScholarPubMed
Gelernter, J., Panhuysen, C., Weiss, R., Brady, K., Poling, J., Krauthammer, M., Farrer, L., & Kranzler, H. R. (2007). Genomewide linkage scan for nicotine dependence: Identification of a chromosome 5 risk locus. Biological Psychiatry, 61, 119126.CrossRefGoogle ScholarPubMed
Grant, B. F., Hasin, D. S., Chou, S. P., Stinson, F. S., & Dawson, D. A. (2004). Nicotine dependence and psychiatric disorders in the United States: Results from the national epidemiologic survey on alcohol and related conditions. Archives of General Psychiatry, 61, 11071115.CrossRefGoogle ScholarPubMed
Hansell, N. K., Agrawal, A., Whitfield, J. B., Morley, K. I., Zhu, G., Lind, P. A., Pergadia, M. L., Madden, P. A., Todd, R. D., Heath, A. C., & Martin, N. G. (2008). Long-term stability and heritability of telephone interview measures of alcohol consumption and dependence. Twin Research & Human Genetics, 11, 287-305.CrossRefGoogle ScholarPubMed
Heath, A. C., Bucholz, K. K., Madden, P. A., Dinwiddie, S. H., Slutske, W. S., Bierut, L. J., Statham, D. J., Dunne, M. P., Whitfield, J. B., & Martin, N. G. (1997). Genetic and environmental contributions to alcohol dependence risk in a national twin sample: consistency of findings in women and men. Psychological Medicine, 27, 1381-1396.Google Scholar
Heatherton, T. F., Kozlowski, L. T., Frecker, R. C., & Fagerstrom, K. O. (1991). The Fagerstrom Test for Nicotine Dependence: a revision of the Fagerstrom Tolerance Questionnaire. British Journal of Addiction, 86, 1119-1127.CrossRefGoogle ScholarPubMed
Hettema, J. M., Corey, L. A., & Kendler, K. S. (1999). A multivariate genetic analysis of the use of tobacco, alcohol, and caffeine in a population based sample of male and female twins. Drug and Alcohol Dependence, 57, 69-78.CrossRefGoogle Scholar
Hishimoto, A., Liu, Q. R., Drgon, T., Pletnikova, O., Walther, D., Zhu, X. G., Troncoso, J. C., & Uhl, G. R. (2007). Neurexin 3 polymorphisms are associated with alcohol dependence and altered expression of specific isoforms. Human Molecular Genetics, 16, 2880-2891.Google Scholar
Hu, G., & Agarwal, P. (2009). Human disease-drug network based on genomic expression profiles. PLoS ONE, 4, e6536.CrossRefGoogle ScholarPubMed
Hurt, R. D., Offord, K. P., Croghan, I. T., Gomez-Dahl, L., Kottke, T. E., Morse, R. M., & Melton, L. J., 3rd. (1996). Mortality following inpatient addictions treatment. Role of tobacco use in a community-based cohort. JAMA, 275, 1097-1103.Google Scholar
Johnson, C., Drgon, T., Liu, Q. R., Walther, D., Edenberg, H., Rice, J., Foroud, T., & Uhl, G. R. (2006). Pooled association genome scanning for alcohol dependence using 104, 268 SNPs: Validation and use to identify alcoholism vulnerability loci in unrelated individuals from the collaborative study on the genetics of alcoholism. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141, 844-853.CrossRefGoogle Scholar
Kenny, P. J., Gasparini, F., & Markou, A. (2003). Group II metabotropic and alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA)/kainate glutamate receptors regulate the deficit in brain reward function associated with nicotine withdrawal in rats. Journal of Pharmacology and Experimental Therapeutics, 306, 1068-1076.Google Scholar
Knopik, V. S., Heath, A. C., Madden, P. A., Bucholz, K. K., Slutske, W. S., Nelson, E. C., Statham, D., Whitfield, J. B., & Martin, N. G. (2004). Genetic effects on alcohol dependence risk: re-evaluating the importance of psychiatric and other heritable risk factors. Psychological Medicine, 34, 1519-1530.Google Scholar
Koopmans, J. R., van Doornen, L. J., & Boomsma, D. I. (1997). Association between alcohol use and smoking in adolescent and young adult twins: a bivariate genetic analysis. Alcoholism: Clinical and Experimental Research, 21, 537-546.Google Scholar
Kuper, H., Tzonou, A., Kaklamani, E., Hsieh, C. C., Lagiou, P., Adami, H. O., Trichopoulos, D., & Stuver, S. O. (2000). Tobacco smoking, alcohol consumption and their interaction in the causation of hepatocellular carcinoma. International Journal of Cancer, 85, 498-502.Google Scholar
Lachman, H. M., Fann, C. S., Bartzis, M., Evgrafov, O. V., Rosenthal, R. N., Nunes, E. V., Miner, C., Santana, M., Gaffney, J., Riddick, A., Hsu, C. L., & Knowles, J. A. (2007). Genomewide suggestive linkage of opioid dependence to chromosome 14q. Human Molecular Genetics, 16, 1327-1334.CrossRefGoogle ScholarPubMed
Lessov, C. N., Martin, N. G., Statham, D. J., Todorov, A. A., Slutske, W. S., Bucholz, K. K., Heath, A. C., & Madden, P. A. (2004). Defining nicotine dependence for genetic research: evidence from Australian twins. Psychological Medicine, 34, 865-879.Google Scholar
Li, C. Y., Mao, X., & Wei, L. (2008). Genes and (common) pathways underlying drug addiction. PLoS Computational Biology, 4, e2.CrossRefGoogle ScholarPubMed
Liechti, M. E., Lhuillier, L., Kaupmann, K., & Markou, A. (2007). Metabotropic glutamate 2/3 receptors in the ventral tegmental area and the nucleus accumbens shell are involved in behaviors relating to nicotine dependence. Journal of Neuroscience, 27, 9077-9085.CrossRefGoogle ScholarPubMed
Liu, Q. R., Drgon, T., Johnson, C., Walther, D., Hess, J., & Uhl, G. R. (2006). Addiction molecular genetics: 639, 401 SNP whole genome association identifies many ‘cell adhesion’ genes. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 141, 918-925.CrossRefGoogle Scholar
Liu, Y. Z., Pei, Y. E., Guo, Y. E, Wang, L., Liu, X. G., Yan, H., Xiong, D. H., Zhang, Y. P., Levy, S., Li, J., Haddock, C. K., Papasian, C. J., Xu, Q., Ma, J. Z., Payne, T. J., Recker, R. R., Li, M. D., & Deng, H. W. (2009). Genome-wide association analyses suggested a novel mechanism for smoking behavior regulated by II 15. Molecular Psychiatry, 14, 668-680.Google Scholar
Loukola, A., Broms, U., Maunu, H., Widen, E., Heikkila, K., Siivola, M., Salo, A., Pergadia, M. L., Nyman, E., Sammalisto, S., Perola, M., Agrawal, A., Heath, A. C., Martin, N. G., Madden, P. A., Peltonen, L., & Kaprio, J. (2008). Linkage of nicotine dependence and smoking behavior on lOq, 7q and 11p in twins with homogeneous genetic background. Pharmacogenomics Journal, 8, 209-219.Google Scholar
Macgregor, S., Visscher, P. M., & Montgomery, G. (2006). Analysis of pooled DNA samples on high density arrays without prior knowledge of differential hybridization rates. Nucleic Acids Research, 34, e55.CrossRefGoogle ScholarPubMed
Macgregor, S., Zhao, Z. Z., Henders, A., Nicholas, M. G., Montgomery, G. W., & Visscher, P. M. (2008). Highly cost-efficient genome-wide association studies using DNA pools and dense SNP arrays. Nucleic Acids Research, 36, e35.CrossRefGoogle ScholarPubMed
Madden, P. A., Bucholz, K. K., Martin, N. G., &c Heath, A. C. (2000). Smoking and the genetic contribution to alcohol-dependence risk. Alcohol Research Health, 24, 209-214.Google ScholarPubMed
Madden, P. A., & Heath, A. C. (2002). Shared genetic vulnerability in alcohol and cigarette use and dependence. Alcoholism: Clinical and Experimental Research, 26, 1919-1921.Google Scholar
Madden, P. A., Heath, A. C., & Martin, N. G. (1997). Smoking and intoxication after alcohol challenge in women and men: genetic influences. Alcoholism: Clinical and Experimental Research, 21, 1732-1741.Google ScholarPubMed
Madden, P. A., Heath, A. C., Pedersen, N. L., Kaprio, J., Koskenvuo, M. J., & Martin, N. G. (1999). The genetics of smoking persistence in men and women: a multicultural study. Behaviour Genetics, 29, 423-431.Google Scholar
Madden, P. A., Pedersen, N. L., Kaprio, J., Koskenvuo, M. J., & Martin, N. G. (2004). The epidemiology and genetics of smoking initiation and persistence: crosscultural comparisons of twin study results. Twin Research, 7, 82-97.Google Scholar
Marchini, J., Howie, B., Myers, S., McVean, G., & Donnelly, P. (2007). A new multipoint method for genome-wide association studies by imputation of genotypes. Nature Genetics, 39, 906-913.CrossRefGoogle ScholarPubMed
Marti, S. B., Cichon, S., Propping, P., & Nothen, M. (2002). Metabotropic glutamate receptor 3 (GRM3) gene variation is not associated with schizophrenia or bipolar affective disorder in the German population. American Journal of Medical Genetics, 114, 46-50.Google Scholar
Maussion, G., Carayol, J., Lepagnol-Bestel, A. M., Tores, R., Loe-Mie, Y., Milbreta, U., Rousseau, F., Fontaine, K., Renaud, J., Moalic, J. M., Philippi, A., Chedotal, A., Gorwood, P., Ramoz, N., Hager, J., & Simonneau, M. (2008). Convergent evidence identifying MAP/microtubule affinity-regulating kinase 1 (MARK1) as a susceptibility gene for autism. Human Molecular Genetics, 17, 2541-2551.Google Scholar
Melquist, S., Craig, D. W., Huentelman, M. J., Crook, R., Pearson, J. V., Baker, M., Zismann, V. L., Gass, J., Adamson, J., Szelinger, S., Corneveaux, J., Cannon, A., Coon, K. D., Lincoln, S., Adler, C., Tuite, P., Calne, D. B., Bigio, F. H., Uitti, R. J., Wszolek, Z. K., Golbe, L. I., Caselli, R. J., Graff-Radford, N., Litvan, I., Farrer, M. J., Dickson, D. W., Hutton, M., & Stephan, D. A. (2007). Identification of a novel risk locus for progressive supranuclear palsy by a pooled genomewide scan of 500, 288 single-nucleotide polymorphisms. American Journal of Human Genetics, 80, 769-778.CrossRefGoogle ScholarPubMed
Mossner, R., Schuhmacher, A., Schulze-Rauschenbach, S., Kuhn, K. U., Rujescu, D., Rietschel, M., Zobel, A., Franke, P., Wolwer, W., Gaebel, W., Hafner, H., Wagner, M., & Maier, W. (2008). Further evidence for a functional role of the glutamate receptor gene GRM3 in schizophrenia. European Neuropsychopharmacology, 18, 768-772.Google Scholar
Norton, N., Williams, H. J., Dwyer, S., Ivanov, D., Preece, A. C., Gerrish, A., Williams, N. M., Yerassimou, P., Zammit, S., O’Donovan, M. C., & Owen, M. J. (2005). No evidence for association between polymorphisms in GRM3 and schizophrenia. BMC Psychiatry, 5, 23.Google Scholar
Novak, G., Boukhadra, J., Shaikh, S. A., Kennedy, J. L., & Le Foil, B. (2009). Association of a polymorphism in the NRXN3 gene with the degree of smoking in schizophrenia: A preliminary study. World Journal of Biological Psychiatry, 1-7.Google Scholar
Owens, J. C., Balogh, S. A., McClure-Begley, T. D., Butt, C. M., Labarca, C., Lester, H. A., Picciotto, M. R., Wehner, J. M., & Collins, A. C. (2003). Alpha4beta2* nicotinic acetylcholine receptors modulate the effects of ethanol and nicotine on the acoustic startle response. Alcoholism: Clinical and Experimental Research, 27, 1867-1875.CrossRefGoogle ScholarPubMed
Papassotiropoulos, A., Stephan, D. A., Huentelman, M. J., Hoerndli, F. J., Craig, D. W., Pearson, J. V., Huynh, K. D., Brunner, F., Corneveaux, J., Osborne, D., Wollmer, M. A., Aerni, A., Coluccia, D., Hanggi, J., Mondadori, C. R., Buchmann, A., Reiman, F. M., Caselli, R. J., Henke, K., & de Quervain, D. J. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475-478.Google Scholar
Penninx, B. W., Beekman, A. T., Smit, J. H., Zitman, F. G., Nolen, W. A., Spinhoven, P., Cuijpers, P., De Jong, P. J., Van Marwijk, H. W., Assendelft, W. J., Van Der Meer, K., Verhaak, P., Wensing, M., De Graaf, R., Hoogendijk, W. J., Ormel, J., & Van Dyck, R. (2008). The Netherlands Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. International Journal of Methods in Psychiatric Research, 17, 121-140.CrossRefGoogle ScholarPubMed
Pergadia, M. L., Agrawal, A., Loukola, A., Montgomery, G. W., Broms, U., Saccone, S. F., Wang, J. C., Todorov, A. A., Heikkila, K., Statham, D. J., Henders, A. K., Campbell, M. J., Rice, J. P., Todd, R. D., Heath, A. C., Goate, A. M., Peltonen, L., Kaprio, J., Martin, N. G., & Madden, P. A. (2009). Genetic linkage findings for DSM-IV nicotine withdrawal in two populations. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 150B, 950-959.CrossRefGoogle ScholarPubMed
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M. A., Bender, D., Mailer, J., Sklar, P., de Bakker, P. I., Daly, M. J., & Sham, P. C. (2007). PLINK: A tool set for whole-genome association and population-based linkage analyses. American Journal of Human Genetics, 81, 559-575.CrossRefGoogle ScholarPubMed
Risch, N., & Merikangas, K. (1996). The future of genetic studies of complex human diseases. Science, 273, 1516-1517.CrossRefGoogle ScholarPubMed
Rosenberger, A., Janicke, N., Kohler, K., Korb, K., Kulle, B., & Bickeboller, H. (2005). Surrogate phenotype definition for alcohol use disorders: A genome-wide search for linkage and association. BMC Genetics, 6(Suppl. 1), S55.Google Scholar
Saccone, S. F., Pergadia, M. L., Loukola, A., Broms, U., Montgomery, G. W., Wang, J. C., Agrawal, A., Dick, D. M., Heath, A. C., Todorov, A. A., Maunu, H., Heikkila, K., Morley, K. I., Rice, J. P., Todd, R. D., Kaprio, J., Peltonen, L., Martin, N. G., Goate, A. M., & Madden, P. A. (2007). Genetic linkage to chromosome 22q12 for a heavy-smoking quantitative trait in two independent samples. American Journal of Human Genetics, 80, 856866.CrossRefGoogle ScholarPubMed
Saccone, S. F., Saccone, N. L., Swan, G. E., Madden, P. A., Goate, A. M., Rice, J. P., & Bierut, L. J. (2008). Systematic biological prioritization after a genome-wide association study: An application to nicotine dependence. Bioinformatics, 24, 18051811.Google Scholar
Schuckit, M. A., Wilhelmsen, K., Smith, T. L., Feiler, H. S., Lind, P., Lange, L. A., & Kalmijn, J. (2005). Autosomal linkage analysis for the level of response to alcohol. Alcoholism: Clinical and Experimental Research, 29, 19761982.CrossRefGoogle ScholarPubMed
Sham, P., Bader, J. S., Craig, I., O’Donovan, M., & Owen, M. (2002). DNA Pooling: a tool for large-scale association studies. Nature Reviews Genetics, 3, 862871.CrossRefGoogle ScholarPubMed
Spinola, M., Leoni, V. P., Galvan, A., Korsching, E., Conti, B., Pastorino, U., Ravagnani, F., Columbano, A., Skaug, V., Haugen, A., & Dragani, T. A. (2007). Genome-wide single nucleotide polymorphism analysis of lung cancer risk detects the KLF6 gene. Cancer Letters, 251, 311316.Google Scholar
Steer, S., Abkevich, V., Gutin, A., Cordell, H. J., Gendall, K. L., Merriman, M. E., Rodger, R. A., Rowley, K. A., Chapman, P., Gow, P., Harrison, A. A., Highton, J., Jones, P. B., O’Donnell, J., Stamp, L., Fitzgerald, L., Iliev, D., Kouzmine, A., Tran, T., Skolnick, M. H., Timms, K. M., Lanchbury, J. S., & Merriman, T. R. (2007). Genomic DNA pooling for whole-genome association scans in complex disease: Empirical demonstration of efficacy in rheumatoid arthritis. Genes & Immunity, 8, 5768.Google Scholar
Sullivan, P. F., de Geus, E. J., Willemsen, G., James, M. R., Smit, J. H., Zandbelt, T., Arolt, V., Baune, B. T., Blackwood, D., Cichon, S., Coventry, W. L., Domschke, K., Farmer, A., Fava, M., Gordon, S. D., He, Q., Heath, A. C., Heutink, P., Holsboer, F., Hoogendijk, W. J., Hottenga, J. J., Hu, Y., Kohli, M., Lin, D., Lucae, S., Macintyre, D. J., Maier, W., McGhee, K. A., McGuffin, P., Montgomery, G. W., Muir, W. J., Nolen, W. A., Nothen, M. M., Pedis, R. H., Pirlo, K., Posthuma, D., Rietschel, M., Rizzu, P., Schosser, A., Smit, A. B., Smoller, J. W., Tzeng, J. Y., van Dyck, R., Verhage, M., Zitman, F. G., Martin, N. G., Wray, N. R., Boomsma, D. I., & Penninx, B. W. (2009). Genome-wide association for major depressive disorder: A possible role for the presynaptic protein piccolo. Molecular Psychiatry, 14, 359375.Google Scholar
Terracciano, A., Sanna, S., Uda, M., Deiana, B., Usala, G., Busonero, F., Maschio, A., Scally, M., Patriciu, N., Chen, W. M., Distel, M. A., Slagboom, E. P., Boomsma, D. I., Villafuerte, S., Sliwerska, E., Burmeister, M., Amin, N., Janssens, A. C., van Duijn, C. M., Schlessinger, D., Abecasis, G. R., & Costa, P. T. Jr. (2008). Genome-wide association scan for five major dimensions of personality. Molecular Psychiatry.Google ScholarPubMed
The International HapMap Consortium. (2003). The International HapMap Project. Nature, 426, 789796.CrossRefGoogle Scholar
Thorgeirsson, T. E., Geller, F., Sulem, P., Rafnar, T., Wiste, A., Magnusson, K. P., Manolescu, A., Thorleifsson, G., Stefansson, H., Ingason, A., Stacey, S. N., Bergthorsson, J. T., Thorlacius, S., Gudmundsson, J., Jonsson, T., Jakobsdottir, M., Saemundsdottir, J., Olafsdottir, O., Gudmundsson, L. J., Bjornsdottir, G., Kristjansson, K., Skuladottir, H., Isaksson, H. J., Gudbjartsson, T., Jones, G. T., Mueller, T., Gottsater, A., Flex, A., Aben, K. K., de Vegt, F., Mulders, P. F., Isla, D., Vidal, M. J., Asin, L., Saez, B., Murillo, L., Blondal, T., Kolbeinsson, H., Stefansson, J. G., Hansdottir, I., Runarsdottir, V., Pola, R., Lindblad, B., van Rij, A. M., Dieplinger, B., Haltmayer, M., Mayordomo, J. I., Kiemeney, L. A., Matthiasson, S. E., Oskarsson, H., Tyrfingsson, T., Gudbjartsson, D. F., Gulcher, J. R., Jonsson, S., Thorsteinsdottir, U., Kong, A., & Stefansson, K. (2008). A variant associated with nicotine dependence, lung cancer and peripheral arterial disease. Nature, 452, 638642.CrossRefGoogle ScholarPubMed
Tochigi, M., Suga, M., Ohashi, J., Otowa, T., Yamasue, H., Kasai, K., Kato, T., Okazaki, Y., Kato, N., & Sasaki, T. (2006). No association between the metabotropic glutamate receptor type 3 gene (GRM3) and schizophrenia in a Japanese population. Schizophrenia Research, 88, 260264.Google Scholar
Treutlein, J., Cichon, S., Ridinger, M., Wodarz, N., Soyka, M., Zill, P., Maier, W., Moessner, R., Gaebel, W., Dahmen, N., Fehr, C., Scherbaum, N., Steffens, M., Ludwig, K. U., Frank, J., Wichmann, H. E., Schreiber, S., Dragano, N., Sommer, W. H., Leonardi-Essmann, F., Lourdusamy, A., Gebicke-Haerter, P., Wienker, T. F., Sullivan, P. F., Nothen, M. M., Kiefer, F., Spanagel, R., Mann, K., & Rietschel, M. (2009). Genome-wide association study of alcohol dependence. Archives of General Psychiatry, 66, 773784.Google Scholar
True, W. R., Xian, H., Scherrer, J. F., Madden, P. A., Bucholz, K. K., Heath, A. C., Eisen, S. A., Lyons, M. J., Goldberg, J., Sc Tsuang, M. (1999). Common genetic vulnerability for nicotine and alcohol dependence in men. Archives of General Psychiatry, 56, 655661.Google ScholarPubMed
Uhl, G. R., Drgon, T., Johnson, C., Li, C. Y., Contoreggi, C., Hess, J., Naiman, D., & Liu, Q. R. (2008a). Molecular genetics of addiction and related heritable phenotypes: Genome-wide association approaches identify ‘connectivity constellation’ and drug target genes with pleiotropic effects. Annals of the New York Academy of Science, 1141, 318381.Google Scholar
Uhl, G. R., Liu, Q. R., Drgon, T., Johnson, C., Walther, D., & Rose, J. E. (2007). Molecular genetics of nicotine dependence and abstinence: whole genome association using 520, 000 SNPs. BMC Genetics, 8, 10.Google Scholar
Uhl, G. R., Liu, Q. R., Drgon, T., Johnson, C., Walther, D., Rose, J. E., David, S. P., Niaura, R., & Lerman, C. (2008b). Molecular genetics of successful smoking cessation: Convergent genome-wide association study results. Archives of General Psychiatry, 65, 683693.Google Scholar
Vink, J. M., Smit, A. B., de Geus, E. J., Sullivan, P., Willemsen, G., Hottenga, J. J., Smit, J. H., Hoogendijk, W. J., Zitman, F. G., Peltonen, L., Kaprio, J., Pedersen, N. L., Magnusson, P. K., Spector, T. D., Kyvik, K. O., Morley, K. I., Heath, A. C., Martin, N. G., Westendorp, R. G., Slagboom, P. E., Tiemeier, H., Hofman, A., Uitterlinden, A. G., Aulchenko, Y. S., Amin, N., van Duijn, C., Penninx, B. W., & Boomsma, D. I. (2009). Genome-wide association study of smoking initiation and current smoking. American Journal of Human Genetics, 84, 367379.CrossRefGoogle ScholarPubMed
Vink, J. M., Willemsen, G., & Boomsma, D. I. (2005). Heritability of smoking initiation and nicotine dependence. Behavior Genetics, 35, 397406.Google Scholar
Wang, K., Li, M., &c Bucan, M. (2007). Pathway-based approaches for analysis of genomewide association studies. American Journal of Human Genetics, 81.Google Scholar
Ye, H., Ma, W. L., Yang, M. L., Liu, S. Y., & Wang, D. X. (2004). Effect of chronic cigarette smoking on large-conductance calcium-activated potassium channel and Kvl.5 expression in bronchial smooth muscle cells of rats. Sheng Li Xue Bao, 56, 573578.Google Scholar