Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-25T17:32:30.267Z Has data issue: false hasContentIssue false

4. Commission Des Ephemerides

Published online by Cambridge University Press:  16 November 2021

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Reports of Commissions
Copyright
Copyright © Academic Press 1965 

References

Bibliography

1. Kulikov, D. K. Ephemerides of Major Planets and Problems of Astrometry. Trud. 15. astrometr. konf. SSSR. Moskva-Leningrad, 77, 1963.Google Scholar
2. Kulikov, D. K., Subbotina, N. S.: On the accuracy of Inner Planet’s Ephemerides published in Astronomical Almanacs. Probl, dviz. iskusstr. nebesn. tel., Moskva, Ak. N. SSSR. [Problems of the motion of Artificial Celestial Bodies], 1963, p. 172.Google Scholar
3. Makover, S. G., Bochan, N. A. Motion of Cornet Encke-Backlund during 1898-1911 and a new Determination of the Mass of Mercury. Dokl. Ak. N. SSSR, 134, 552, 1960.Google Scholar
4. Fridljand, M. V. Determination of the Constants of the Moon’s Physical Libration in case when the value of the Parameters f is close to the critical one. Bjull. Inst. teoret. Astr., 8, 225, 1961.Google Scholar
5. Michailov, A. A. The Astronomical Unit of Length. Astr. Zu., 39, 569, 1962.Google Scholar
6. Martynov, D. Y. The Radius of Venus. II, Astr. Zu., 39, 653, 1962.Google Scholar
7. Kotelnikov, V. A., Dubinsky, B. A., Kislik, M. D., Tsvetkov, D. M. More exact Determination of the Astronomical Unit from the results of Radar Bouncing of the Planet Venus in 1961, Iskusstv. Sputniki Zemli [Earth’s Artificial Satellites] iss. 17, Ed. Acad. Se. U.S.S.R., 1963.Google Scholar
8. Lemechova, E. N. New System of Elements and Tables of the Motion of Jupiter’s X Satellite, Bjull. Inst. teoret. Astr., 8, 103, 1961.Google Scholar
9. Kulikov, D. K. Integration equations of motion of Celestial Mechanics by Cowell’s Method with automatical choice of the step on Electronic Computing Machines, Bjull. Inst. teoret. Astr., 7, 770, 1960.Google Scholar
10. Kulikov, D. K. Integration of equations of Celestial Mechanics by Cowelľs Method with variable intervals, in Dynamics of Satellites, p. 123, IUTAM Symp. Paris, 1962. Ed. Roy, M., Springer, Berlin, Heidelberg, Göttingen, 1963.Google Scholar
11. Miatchine, V. F. On a Criterion for changing the step in Numerical Integration of equations of Celestial Mechanics by the generalized method of Runge, Bjull. Inst. teoret. Astr., 8, 134, 1961.Google Scholar
12. Miatchine, V. F. Evaluation of errors in Numerical Methods of Integration equations of Celestial Mechanics, Bjull. Inst. teoret. Astr., 8, 537, 1962.Google Scholar
1. Yamazaki, A. et al. Occultation observations in 1956 and 1957. Hydrogr. Bull., Tokyo, no. 73, 1963.Google Scholar
2. Yamazaki, A. Report of photo-electric observations of occultations from 1956 to 1961, Contr. Marine, Res. Lab. Hydrogr. Off. Japan (in press).Google Scholar
3. Hurukawa, K. On the precise calculation of the apparent places of fixed stars using the rectangular co-ordinates. Proc. Intern. Lat. Obs. Mizusawa, no. 3, 1963.Google Scholar