Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-27T06:37:09.635Z Has data issue: false hasContentIssue false

2. Anisotropy of the blackbody radiation

Published online by Cambridge University Press:  25 April 2016

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The 2.7 K microwave background radiation provides a sensitive probe of the universe in the interesting, but poorly understood, epoch around z ˜ 1000. At this time (age ~ 10 yr) the universe has cooled to T ~ 4000 K, the plasma combines, Thomson scattering ceases, and matter and blackbody radiation decouple. Subsequently, the radiation freely propagates to us, carrying the imprint of temperature fluctuations on the z ~ 1000 surface. The temperature fluctuations could have been caused by primordial density fluctuations, anisotropy in the expansion of the universe, or inhomogeneity in the initial temperature distribution; the z = 1000 surface we see was not causally connected at the time the radiation was released. Interpretation of the anisotropy measurements is complicated by the possibility that the matter may have been reionized (e.g. by massive stars), so the radiation may have been rescattered, possibly as late as z ~ 7.

Type
Research Article
Copyright
Copyright © Reidel 1985

References

1. For references and discussion of alternative models see: Ellis, G.F.R. 1984, Ann. Rev. Astron. Astrophys. 22, p. 157.Google Scholar
2. For reviews see: Weiss, R. 1980, Ann. Rev. Astron. Astrophys. 18, p. 489;Google Scholar
Sunyaev, R.A. and Zel’dovich, Ya. B. 1980, Ann. Rev. Astron. Astrophys. 18, p. 537;Google Scholar
Melchiorn, B., Melchiorn, F. 1982, Alta Cosmologica DCLXXIV, p. 27.Google Scholar
3. Bond, J.R. and Efstathiou, G. 1984, Inner Space/Outer Space Conference Proceedings (Fermilab);Google Scholar
Vittorio, N. and Silk, J. 1984, Inner Space/Outer Space Conference Proceedings (Fermilab).Google Scholar
4. Partridge, R.B. 1980, Phys. Scripta 21, p. 624; 1980, Ap. J. 235, p. 681; 1983, “The Origin and Evolution of Galaxies”, VIIth Course of the International School of Cosmology and Gravitation (Eds. Jones, B.J.T. and Jones, J.E.), p. 121.Google Scholar
5. Hogan, C.J., Kaiser, N. and Rees, M.J. 1982, Phil. Trans. R. Soc. London A, 307, pp. 97110.Google Scholar
6. Uson, J.M. and Wilkinson, D.T. 1984, Nature (in press)Google Scholar
1984, Ap. J. Letters 277, L1;Google Scholar
1984, Ap. J. 283, pp. 471478;Google Scholar
1982, Phys. Rev. Letters 49, p. 1463.Google Scholar
7. Fomalont, E.B., Kellerman, K.I. and Wall, J.V. 1984, Ap. J. Letters 277, L23.Google Scholar
8. Knoke, J.E., Partridge, R.B., Ratner, M.I. and Shapiro, I.I. 1984, Ap. J. 284, p. 479.CrossRefGoogle Scholar
9. Berlin, A.B., Bulaenko, E.V., Vitkovsky, V.V., Kononov, V.K., Panjski, Yu. N. and Petrov, Z.E. 1983, “Early Evolution of the Universe and Its Present StructureIAU Symposium N° 104 (Eds. Abell, and Chincanni, ), p. 121.Google Scholar
10. Lasenby, A.N. and Davies, R.D. 1983, M.N.R.A.S. 203, pp. 11371169. Also, see this paper for discussion and early results of a promising smallscale anisotropy program at X = 6 cm.Google Scholar
11. Wilson, M.L. and Silk, J. 1981, Ap. J. 243, p. 14.Google Scholar
12. Peebles, P.J.E. 1981, Ap. J. Letters 243, L119L121.CrossRefGoogle Scholar
13. Melchiorn, F., Melchiorn, B.O., Ceccarelli, C. and Pietranera, L. 1981, Ap. J. Letters 250, L1.Google Scholar
14. Ceccarelli, C., Dall’Oglio, G., Merchiorn, B., Melchiorn, F. and Pietranera, L. 1982, Ap. J. 260, p. 484.Google Scholar
15. Lubin, P.M., Epstein, G.L. and Smoot, G.F. 1983, Phys. Rev. Letters 50 p. 616.CrossRefGoogle Scholar
16. Fixson, D.J., Cheng, E.S. and Wilkinson, D.T. 1983, Phys. Rev. Letters 50, p. 620.Google Scholar
17. Fabbri, R., Guidi, I., Melchiorn, F., Natale, V. 1980, Phys. Rev. Lett. 39 p. 898.Google Scholar
18. Wilkinson, D.T. 1983, “Early Evolution of the Universe and Its Present Structure”, IAU Symposium N° 104 (Eds. Chincarini, Abelland), p. 143.Google Scholar
19. Hart, L. and Davies, R.D. 1982, Nature 297, p. 191.Google Scholar
20. Boughn, S.P., Cheng, E.S., Wilkinson, D.T. 1981, Ap. J. Letters 243, L113.Google Scholar
21. de Bernardis, P., Masi, S., Melchiorn, F. and Moleti, A. 1984. Ap. J. Letters 284, L21.Google Scholar
22. Sunyaev, R.A. and Zel’dovich, Ya. B. 1972, Comments Ap. Space Phys. 4, p 173.Google Scholar
23. Boynton, P.E., Radford, S.J.E., Schommer, R.A. and Murray, S.S. 1982, Ap. J. 252, p. 473.CrossRefGoogle Scholar
24. White, S.D.M., Silk, J., Henry, J.P. 1981, Ap. J. Letters 251, L65.CrossRefGoogle Scholar
25. Lake, G. and Partridge, R.B. 1980, Ap. J. 237, p. 378.CrossRefGoogle Scholar
26. Birkmshaw, M., Gull, S.F. and Moffet, A.T. 1981, Ap. J. Letters 251, L69;Google Scholar
Birkmshaw, M., Gull, S.F. and Northover, K.J.E. 1981, M.N.R.A.S. 197, p. 571;Google Scholar
birkmshaw, M. and Gull, D. F. 1984, M.N.R.A.S. 206, pp. 359375.Google Scholar
27. Andernach, H., Schallwich, O., Sholomitski, G.B. and Wielebinski, R. 1983, Astron. Astrophys. 124, pp. 326330.Google Scholar
28. Birkmshaw, M., Gull, S.F. and Hardebeck, H. 1984, Nature 309, p. 34.CrossRefGoogle Scholar
29. Uson, J. and Wilkinson, D.T. 1984, Bull. Am. Astron. Soc. 16, p. 513.Google Scholar
30. Meyer, S.S., Jeffries, A.D. and Weiss, R. 1983, Ap. J. Letters 271, L1.Google Scholar