Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-08T14:22:38.976Z Has data issue: false hasContentIssue false

Using a Macroecological Approach to Study Geographic Range, Abundance and Body Size in the Fossil Record

Published online by Cambridge University Press:  21 July 2017

S. Kathleen Lyons
Affiliation:
Department of Paleobiology, Smithsonian Institution, PO Box 37012, MRC 121, Washington, DC 20013-7012
Felisa A. Smith
Affiliation:
Biology Department, MSC03 2020, 1 University of New Mexico, Albuquerque, NM 87131
Get access

Abstract

Macroecology is a rapidly growing sub-discipline within ecology that is concerned with characterizing statistical patterns of species' abundance, distribution and diversity at spatial and temporal scales typically ignored by traditional ecology. Both macroecology and paleoecology are concerned with answering similar questions (e.g., understanding the factors that influence geographic ranges, or the way that species assemble into communities). As such, macroecological methods easily lend themselves to many paleoecological questions. Moreover, it is possible to estimate the variables of interest to macroecologists (e.g., body size, geographic range size, abundance, diversity) using fossil data. Here we describe the measurement and estimation of the variables used in macroecological studies and potential biases introduced by using fossil data. Next we describe the methods used to analyze macroecological patterns and briefly discuss the current understanding of these patterns. This chapter is by no means an exhaustive review of macroecology and its methods. Instead, it is an introduction to macroecology that we hope will spur innovation in the application of macroecology to the study of the fossil record.

Type
Ecological Data
Copyright
Copyright © 2010 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, R. M. 1989. Dynamics of dinosaurs and other extinct giants. Columbia University Press, New York, 167 p.Google Scholar
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280:731734.CrossRefGoogle ScholarPubMed
Alroy, J. 2000. New methods for quantifying macroevolutionary patterns and processes. Paleobiology, 26:707733.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2003. Taxonomic inflation and body mass distributions in North American fossil mammals. Journal of Mammalogy, 84:431443.2.0.CO;2>CrossRefGoogle Scholar
Alroy, J. 2004. Climate, environment, and the ecomorphology of mammals. Journal of Vertebrate Paleontology, 24:34A34A.Google Scholar
Anderson, J. F., Hall-Martin, A., and Russell, D. A. 1985. Long-bone circumference and weight in mammals, birds, and dinosaurs. Journal of Zoology, 207:5361.CrossRefGoogle Scholar
Anderson, R. P., Lew, D., and Peterson, A. T. 2003. Evaluating predictive models of species' distributions: Criteria for selecting optimal models. Ecological Modelling, 162:2112321.CrossRefGoogle Scholar
Araujo, M. B., Pearson, R. G., Thuiller, W., and Erhard, M. 2005. Validation of species-climate impact models under climate change. Global Change Biology, 11:15041513.CrossRefGoogle Scholar
Arita, H. T. 2005. Range size in mid-domain models of species diversity. Journal Of Theoretical Biology, 232:119126.CrossRefGoogle ScholarPubMed
Arita, H. T., and Figueroa, F. 1999. Geographic patterns of body-mass diversity in Mexican mammals. Oikos, 85:310319.CrossRefGoogle Scholar
Arita, H. T., Figueroa, F., Frisch, A., Rodriguez, P., and SantosDelPrado, K. 1997. Geographical range size and the conservation of Mexican mammals. Conservation Biology, 11:92100.CrossRefGoogle Scholar
Austin, M. P. 2002. Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling, 157:101118.CrossRefGoogle Scholar
Barker, V. J., and Kelt, D. A. 2000. Scale-dependent patterns in body size distributions of neotropical mammals. Ecology, 81:35303547.Google Scholar
Beck, J., Kitching, I. J., and Linsenmair, K. E. 2006. Extending the study of range-abundance relations to tropical insects: sphingid moths in Southeast Asia. Evolutionary Ecology Research, 8:677690.Google Scholar
Blackburn, T. M., and Gaston, K. J. 1994. Animal Body-Size Distributions - Patterns, Mechanisms and Implications. Trends in Ecology & Evolution, 9:471474.CrossRefGoogle ScholarPubMed
Blackburn, T. M., and Gaston, K. J. 1996a. Spatial patterns in the body sizes of bird species in the New World. Oikos, 77:436446.CrossRefGoogle Scholar
Blackburn, T. M., and Gaston, K. J. 1996b. Spatial patterns in the geographic range sizes of bird species in the New World. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences, 351:897912.Google Scholar
Blackburn, T. M., and Gaston, K. J. 2001. Linking patterns in macroecology. Journal of Animal Ecology, 70:338352.CrossRefGoogle Scholar
Blackburn, T. M., Gaston, K. J., and Gregory, R. D. 1997. Abundance-range size relationships in British birds: is unexplained variation a product of life history? Ecography, 20:466474.CrossRefGoogle Scholar
Blackburn, T. M., Gaston, K. J., and Loder, N. 1999. Geographic gradients in body size: a clarification of Bergmann's rule. Diversity and Distributions, 5:165174.CrossRefGoogle Scholar
Blackburn, T. M., and Ruggiero, A. 2001. Latitude, elevation and body mass variation in Andean passerine birds. Global Ecology And Biogeography, 10:245259.CrossRefGoogle Scholar
Boback, S. M., and Guyer, C. 2003. Empirical evidence for an optimal body size in snakes. Evolution, 57:345351.Google ScholarPubMed
Brown, J. H. 1995. Macroecology. University of Chicago Press, Chicago, IL.Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. 2004. Toward a metabolic theory of ecology. Ecology, 85:17711789.CrossRefGoogle Scholar
Brown, J. H., and Nicoletto, P. F. 1991. Spatial Scaling Of Species Composition - Body Masses Of North-American Land Mammals. American Naturalist, 138:14781512.CrossRefGoogle Scholar
Brown, J. H., Stevens, G. C., and Kaufman, D. M. 1996. The geographic range: Size, shape, boundaries, and internal structure. Annual Review Of Ecology And Systematics, 27:597623.CrossRefGoogle Scholar
Buzas, M. A., and Gibson, T. G. 1969. Species diversity: Benthonic foraminifera in western North America. Science, 163:7275.CrossRefGoogle Scholar
Calder, W. A. 1984. Size, function, and life history. Harvard University Press, Cambridge, MA.Google Scholar
Chown, S. L., and Gaston, K. J. 2000. Areas, cradles and museums: the latitudinal gradient in species richness. Trends in Ecology and Evolution, 15:311315.CrossRefGoogle ScholarPubMed
Colbert, E. H. 1962. The weights of dinosaurs. American Museum Novitates, 2076:116.Google Scholar
Colwell, R. K., and Hurtt, G. C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. The American Naturalist, 144:570595.CrossRefGoogle Scholar
Colwell, R. K., Rahbek, C., and Gotelli, N. J. 2004. The mid-domain effect and species richness patterns: what have we learned so far? American Naturalist, 163:E1E23.CrossRefGoogle ScholarPubMed
Colwell, R. K., Rahbek, C., and Gotelli, N. J. 2005. The mid-domain effect: There's a baby in the bathwater. American Naturalist, 166:E149E154.CrossRefGoogle Scholar
Connolly, S. R. 2005. Process-based models of species distributions and the mid-domain effect. American Naturalist, 166:111.CrossRefGoogle ScholarPubMed
Croft, D. A. 2001. Cenozoic environmental change in South America as indicated by mammalian body size distributions (cenograms). Diversity and Distributions, 7:271287.CrossRefGoogle Scholar
Currie, D. 1991. Energy and large-scale patterns of animal-and plant-species richness. Am Nat, 137:27.CrossRefGoogle Scholar
Damuth, J. 1987. Interspecific Allometry of Population-Density in Mammals and Other Animals - the Independence of Body-Mass and Population Energy-Use. Biological Journal of the Linnean Society, 31:193246.CrossRefGoogle Scholar
Damuth, J. 2007. A macroevolutionary explanation for energy equivalence in the scaling of body size and population density. American Naturalist, 169:621631.CrossRefGoogle ScholarPubMed
Damuth, J., and MacFadden, B. J. 1990. Body size in mammalian paleobiology : estimation and biological implications. Cambridge University Press, New York, NY.Google Scholar
Dayan, T., Simberloff, D., Tchernov, E., and Yom-Tov, Y. 1991. Calibrating the paleothermometer: climate, communities, and the evolution of size. Paleobiology, 17:189199.CrossRefGoogle Scholar
Diniz, J. A. F., Carvalho, P., Bini, L. M., and Torres, N. M. 2005. Macroecology, geographic range size-body size relationship and minimum viable population analysis for new world carnivora. Acta Oecologica-International Journal Of Ecology, 27:2530.Google Scholar
Dormann, C. 2007. Effects of incorporating spatial autocorrelation into the analysis of species distribution data. Global Ecology and Biogeography, 16:129138.CrossRefGoogle Scholar
Enquist, B. J., Brown, J. H., and West, G. B. 1998. Allometric scaling of plant energetics and population density. Nature, 395:163165.CrossRefGoogle Scholar
Enquist, B. J., West, G. B., Charnov, E. L., and Brown, J. H. 1999. Allometric scaling of production and life-history variation in vascular plants. Nature, 401:907911.CrossRefGoogle Scholar
Ernest, S. K. M., Enquist, B. J., Brown, J. H., Charnov, E. L., Gillooly, J. F., Savage, V., While, E. P., Smith, F. A., Hadly, E. A., Haskell, J. P., Lyons, S. K., Maurer, B. A., Niklas, K. J., and Tiffney, B. 2003. Thermodynamic and metabolic effects on the scaling of production and population energy use. Ecology Letters, 6:990995.CrossRefGoogle Scholar
FAUNMAP Working group. 1994. A database documenting late Quaternary distributions of mammal species in the United States. Vol. 1, 25, 1287 p.Google Scholar
Figueiredo, M. S. L., and Grelle, C. E. V. 2009. Predicting global abundance of a threatened species from its occurrence: implications for conservation planning. Diversity And Distributions, 15:117121.CrossRefGoogle Scholar
Foote, M. 2007. Symmetric waxing and waning of marine invertebrate genera. Paleobiology, 33:517529.CrossRefGoogle Scholar
Foote, M., Crampton, J. S., Beu, A. G., and Cooper, R. A. 2008. On the bidirectional relationship between geographic range and taxonomic duration. Paleobiology, 34:421433.CrossRefGoogle Scholar
Foote, M., Crampton, J. S., Beu, A. G., Marshall, B. A., Cooper, R. A., Maxwell, P. A., and Matcham, I. 2007. Rise and fall of species occupancy in Cenozoic fossil mollusks. Science, 318:11311134.CrossRefGoogle ScholarPubMed
Freckleton, R. P., Harvey, P. H., and Pagel, M. 2003. Bergmann's rule and body size in mammals. American Naturalist, 161:821825.CrossRefGoogle ScholarPubMed
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 1996a. Conservation implications of geographic range size body size relationships. Conservation Biology, 10:638646.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 1996b. Global scale macroecology: Interactions between population size, geographic range size and body size in the Anseriformes. Journal Of Animal Ecology, 65:701714.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 1996c. Range size body size relationships: Evidence of scale dependence. Oikos, 75:479485.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 2000. Pattern and process in macroecology. Blackwell Science, Oxford.CrossRefGoogle Scholar
Gaston, K. J., and Blackburn, T. M. 2003. Macroecology and Conservation Biology, p. 345367. In Blackburn, T. M. and Gaston, K. J. (eds.), Macroecology: Concepts and Consequences. Blackwell Science, Oxford.Google Scholar
Gaston, K. J., Blackburn, T. M., Greenwood, J. J. D., Gregory, R. D., Quinn, R. M., and Lawton, J. H. 2000. Abundance-occupancy relationships. Journal of Applied Ecology, 37:3959.CrossRefGoogle Scholar
Gaston, K. J., Blackburn, T. M., and Spicer, J. I. 1998. Rapoport's rule: time for an epitaph? Trends in Ecology & Evolution, 13:7074.CrossRefGoogle ScholarPubMed
Gaston, K. J., and Chown, S. L. 1999. Why Rapoport's rule does not generalise. Oikos, 84:309312.CrossRefGoogle Scholar
Georges, J. Y., and Fossette, S. 2006. Estimating body mass in the leatherback turtle Dermochelys coriacea. Marine Ecology-Progress Series, 318:255262.CrossRefGoogle Scholar
Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M., and Charnov, E. L. 2001. Effects of size and temperature on metabolic rate. Science, 293:22482251.CrossRefGoogle ScholarPubMed
Gotelli, N. J., and Graves, G. R. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D. C. Google Scholar
Hall, E. R. 1981. The mammals of North America. Wiley, New York.Google Scholar
Harcourt, A. H. 2006. Rarity in the tropics: biogeography and macroecology of the primates. Journal Of Biogeography, 33:20772087.CrossRefGoogle Scholar
Hausdorf, B. 2003. Latitudinal and altitudinal body size variation among north-west European land snail species. Global Ecology And Biogeography, 12:389394.CrossRefGoogle Scholar
Hawkins, B., Diniz-Filho, J., Bini, L., De Marco, P., and Blackburn, T. 2007. Red herrings revisited: spatial autocorrelation and parameter estimation in geographical ecology. Ecography, 30.CrossRefGoogle Scholar
Hawkins, B. A., and Agrawal, A. A. 2005. Latitudinal gradients. Ecology, 86:22612262.CrossRefGoogle Scholar
He, F. L., and Gaston, K. J. 2000. Occupancy-abundance relationships and sampling scales. Ecography, 23:503511.CrossRefGoogle Scholar
Hecnar, S. J. 1999. Patterns of turtle species' geographic range size and a test of Rapoport's rule. Ecography, 22:436446.CrossRefGoogle Scholar
Hendriks, A. J., and Mulder, C. 2008. Scaling of offspring number and mass to plant and animal size: model and meta-analysis. Oecologia, 155:705716.CrossRefGoogle ScholarPubMed
Hendy, A. J. W. 2009. The influence of lithification on Cenozoic marine biodiveristy trends. Paleobiology, 35:5162.CrossRefGoogle Scholar
Hillebrand, H. 2004. On the generality of the latitudinal diversity gradient. American Naturalist, 163:192211.CrossRefGoogle ScholarPubMed
Holt, A. R., Gaston, K. J., and He, F. L. 2002. Occupancy-abundance relationships and spatial distribution: A review. Basic And Applied Ecology, 3:113.CrossRefGoogle Scholar
Hunt, G., and Roy, K. 2006. Climate change, body size evolution, and Cope's Rule in deep-sea ostracodes. Proceedings of the National Academy of Sciences, 103:13471352.CrossRefGoogle ScholarPubMed
Hurlbert, S. H. 1972. The nonconcept of species diveristy: a critique and alternative parameters. Ecology, 52:577586.CrossRefGoogle Scholar
Husak, M. S., and Husak, A. L. 2003. Latitudinal patterns in range sizes of New World woodpeckers. Southwestern Naturalist, 48:6169.2.0.CO;2>CrossRefGoogle Scholar
Hutchinson, G. E., and MacArthur, R. H. 1959. A theoretical ecological model of size distributions among species of animals. The American Naturalist, 93:117125.CrossRefGoogle Scholar
Jablonski, D. 1993. The Tropics As A Source Of Evolutionary Novelty Through Geological Time. Nature, 364:142144.CrossRefGoogle Scholar
Jablonski, D. 1996. Body size and macroevolution., p. 256289. In Jablonski, D., Erwin, D., and Lipps, J. H. (eds.), Evolutionary Paleobiology. University of Chicago Press, Chicago.Google Scholar
Jablonski, D. 1997. Body-size evolution in Cretaceous molluscs and the status of Cope's rule. Nature, 385:250252.CrossRefGoogle Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: Evolutionary dynamics of the latitudinal diversity gradient. Science, 314:102106.CrossRefGoogle ScholarPubMed
Jun, J., Pepper, J. W., Savage, V. M., Gillooly, J. F., and Brown, J. H. 2003. Allometric scaling of ant foraging trail networks. Evolutionary Ecology Research, 5:297303.Google Scholar
Kelt, D. A., and Meyer, M. D. 2009. Body size frequency distributions in African mammals are bimodal at all spatial scales. Global Ecology And Biogeography, 18:1929.CrossRefGoogle Scholar
Kerkhoff, A. J., and Enquist, B. J. 2006. Ecosystem allometry: the scaling of nutrient stocks and primary productivity across plant communities. Ecology Letters, 9:419427.CrossRefGoogle ScholarPubMed
Kerkhoff, A. J., Enquist, B. J., Elser, J. J., and Fagan, W. F. 2005. Plant allometry, stoichiometry and the temperature-dependence of primary productivity. Global Ecology and Biogeography, 14:585598.CrossRefGoogle Scholar
Kerr, J., and Packer, L. 1997. Habitat heterogeneity as a determinant of mammal species richness in high-energy regions. Nature, 385:252254.CrossRefGoogle Scholar
Kerr, J., and Packer, L. 1999. The environmental basis of North American species richness patterns among Epicauta (Coleoptera: Meloidae). Biodiversity And Conservation, 8:617628.CrossRefGoogle Scholar
Kissling, W., and Carl, G. 2008. Spatial autocorrelation and the selection of simultaneous autoregressive models. Global Ecology and Biogeography, 17:5971.CrossRefGoogle Scholar
Kodric-Brown, A., Sibly, R. M., and Brown, J. H. 2006. The allometry of ornaments and weapons. Proceedings Of The National Academy Of Sciences Of The United States Of America, 103:87338738.CrossRefGoogle ScholarPubMed
Koleff, P., and Gaston, K. J. 2001. Latitudinal gradients in diversity: real patterns and random models. Ecography, 24:341351.CrossRefGoogle Scholar
Kosnik, M. A., Jablonski, D., Lockwood, R., and Novack-Gottshall, P. M. 2006. Quantifying molluscan body size in evolutionary and ecological analyses: Maximizing the return on data-collection efforts. Palaios, 21:588597.CrossRefGoogle Scholar
Krug, A. Z., Jablonski, D., and Valentine, J. W. 2008. Speciesgenus ratios reflect a global history of diversification and range expansion in marine bivalves. Proceedings Of The Royal Society B-Biological Sciences, 275:11171123.CrossRefGoogle ScholarPubMed
Legendre, S. 1986. Analysis of mammalian communities from the late Eocene and Oligocene of southern France. Palaeovertebrata, 16:191212.Google Scholar
Legendre, S. 1989. Les communautés de mammifères du Paléogène (Eocène supérieur et Oligocène) d'Europe occidentale: structures, milieux et évolution. Münchner Geowiss. Abh. (A), 16:1110.Google Scholar
Loder, N., Blackburn, T. M., and Gaston, K. J. 1997. The slippery slope: Towards an understanding of the body size frequency distribution. Oikos, 78:195201.CrossRefGoogle Scholar
Lomolino, M., Sax, D., and Brown, J. 2004. Foundations of biogeography: classic papers with commentaries. University of Chicago Press.Google Scholar
Lyons, S. K. 1994. Areography of New World bats and marsupials. , Texas Tech University, Lubbock.Google Scholar
Lyons, S. K. 2003. A quantitative assessment of the range shifts of Pleistocene mammals. Journal of Mammalogy, 84:385402.2.0.CO;2>CrossRefGoogle Scholar
Lyons, S. K. 2005. A quantitative model for assessing community dynamics of pleistocene mammals. American Naturalist, 165:E168E185.CrossRefGoogle ScholarPubMed
Lyons, S. K., Brown, J. H., Ernest, S. K. M., and Smith, F. A. 2003. Macroecology of Late Pleistocene mammals: body size and local community structure. Abstacts with Programs, Geological Society of America, 35:85.Google Scholar
Lyons, S. K., and Smith, F. A. 2006. Assessing biases in the mammalian fossil record using late Pleistocene mammals from North America. Abstacts with Programs, Geological Society of America, 38.Google Scholar
Lyons, S. K., Smith, F. A., and Brown, J. H. 2004. Of mice, mastodons and men: human-mediated extinctions on four continents. Evolutionary Ecology Research, 6:339358.Google Scholar
Lyons, S. K., and Wagner, P. J. 2009. Using a macroecological approach to the fossil record to help inform conservation biology, p. 141166. In Dietl, G. P. and Flessa, K. W. (eds.), Conservation Paleobiology: Using the past to manage the future. Volume 15. The Paleonotolgoical Society Papers.Google Scholar
Lyons, S. K., and Willig, M. R. 1997. Latitudinal patterns of range size: methodological concerns and empirical evaluations for New World bats and marsupials. Oikos, 79:568580.CrossRefGoogle Scholar
Lyons, S. K., and Willig, M. R. 1999. A hemispheric assessment of scale dependence in latitudinal gradients of species richness. Ecology, 80:24832491.CrossRefGoogle Scholar
Lyons, S. K., and Willig, M. R. 2002. Species richness, latitude, and scale-sensitivity. Ecology, 83:4758.CrossRefGoogle Scholar
Madin, J. S., and Lyons, S. K. 2005. Incomplete sampling of geographic ranges weakens or reverses the positive relationship between an animal species' geographic range size and its body size Evolutionary Ecology Research, 7:607617.Google Scholar
Magurran, A. 1988. Ecological diversity and its measurement. Taylor & Francis.CrossRefGoogle Scholar
Magurran, A. 2004. Measuring biological diversity. African Journal of Aquatic Science, 29:285286.Google Scholar
Magurran, A. 2005. Biological diversity. Current Biology, 15:R116R118.CrossRefGoogle ScholarPubMed
Marquet, P. A., and Cofre, H. 1999. Large temporal and spatial scales in the structure of mammalian assemblages in South America: a macroecological approach. Oikos, 85:299309.CrossRefGoogle Scholar
Marquet, P. A., Navarrete, S. A., and Castilla, J. C. 1995. Body-Size, Population-Density, and the Energetic Equivalence Rule. Journal of Animal Ecology, 64:325332.CrossRefGoogle Scholar
Martinez-Meyer, E., Peterson, A. T., and Hargrove, W. W. 2004. Ecological niches as stable distributional constraints on mammal species, with implications for Pleistocene extinctions and climate change projections for biodiversity. Global Ecology and Biogeography, 13:305314.CrossRefGoogle Scholar
Maurer, B. A., Brown, J. H., Dayan, T., Enquist, B. J., Ernest, S. K. M., Hadly, E. A., Haskell, J. P., Jablonski, D., Jones, K. E., Kaufman, D. M., Lyons, S. K., Niklas, K. J., Porter, W. P., Roy, K., Smith, F. A., Tiffney, B., and Willig, M. R. 2004. Similarities in body size distributions of small-bodied flying vertebrates. Evolutionary Ecology Research, 6:783797.Google Scholar
May, R. M. 1978. Diversity of insect faunas. Blackwell Scientific Publications, London.Google Scholar
Mayr, E. 1956. Geographical character gradients and climatic adaptation. Evolution, 10:105108.CrossRefGoogle Scholar
McClain, C. R. 2004. Connecting species richness, abundance and body size in deep-sea gastropods. Global Ecology And Biogeography, 13:327334.CrossRefGoogle Scholar
Montuire, S. 1999. Mammalian faunas as indicators of environmental and climatic changes in Spain during the Pliocene-Quaternary transition. Quaternary Research, 52:129137.CrossRefGoogle Scholar
Murphy, H. T., VanDerWal, J., and Lovett-Doust, J. 2006. Distribution of abundance across the range in eastern North American trees. Global Ecology And Biogeography, 15:6371.CrossRefGoogle Scholar
Niklas, K. J. 1994a. Predicting the height of fossil plant remains: an allometric approach to an old problem. American Journal Of Botany, 81:12351242.CrossRefGoogle Scholar
Niklas, K. J. 1994b. The scaling of plant and animal body mass, length, and diameter Evolution, 48:4454.CrossRefGoogle ScholarPubMed
Novack-Gottshall, P. M. 2008. Using Simple Body-Size Metrics to Estimate Fossil Body Volume: Empirical Validation Using Diverse Paleozoic Invertebrates. Palaios, 23:163173.CrossRefGoogle Scholar
Olalla-Tarraga, M. A., Rodriguez, M. A., and Hawkins, B. A. 2006. Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal Of Biogeography, 33:781793.CrossRefGoogle Scholar
Parra, R. 1978. The brachiosaur giantsof the Morrisonand Tendaguru with a description of a new subgenus, Giraffatitan, and a comparison of the world's largest dinosaurs. Hunteria, 2:114.Google Scholar
Patterson, B. D., Geballos, G., Securest, W., Toghelli, M., Brooks, G. T., Luna, L., Ortega, P., Salazar, I., and Young, B. E. 2003. Digital distribution maps of the mammals of the Western Hemisphere. Version 1.0. Nature Serve, Arlington Virginia.Google Scholar
Paul, G. S. 1988. The brachiosaur giants of the Morrisonand Tendaguru with a description of a new subgenus, Giraffatitan, and a comparison of the world's largest dinosaurs. Hunteria, 2:114.Google Scholar
Payne, J. L., Boyer, A. G., Brown, J. H., Finnegan, S., Kowalewski, M., Krause, R. A., Lyons, S. K., McClain, C. R., McShea, D. W., Novack-Gottshall, P. M., Smith, F. A., Stempien, J. A., and Wang, S. C. 2009. Two-phase increase in the maximum size of life over 3.5 billion years reflects biological innovation and environmental opportunity. Proceedings Of The National Academy Of Sciences Of The United States Of America, 106:2427.CrossRefGoogle ScholarPubMed
Peters, R. H. 1983. The ecological implications of body size. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Peters, S. E. 2004. Evenness of Cambrian-Ordovician benthic marine communities in North America. Paleobiology, 30:325346.2.0.CO;2>CrossRefGoogle Scholar
Peterson, A. T. 2001. Predicting species' geographic distributions based on ecological niche modeling. Condor, 103:599605.CrossRefGoogle Scholar
Peterson, A. T., Martinez-Meyer, E., and Gonzalez-Salazar, C. 2004a. Reconstructing the Pleistocene geography of the Aphelocoma jays (Corvidae). Diversity and Distributions, 10:237246.CrossRefGoogle Scholar
Peterson, A. T., Martinez-Meyer, E., Gonzalez-Salazar, C., and Hall, P. W. 2004b. Modeled climate change effects on distributions of Canadian butterfly species. Canadian Journal Of Zoology-Revue Canadienne De Zoologie, 82:851858.CrossRefGoogle Scholar
Peterson, A. T., Ortega-Huerta, M. A., Bartley, J., Sanchez-Cordero, V., Soberon, J., Buddemeier, R. H., and Stockwell, D. R. B. 2002. Future projections for Mexican faunas under global climate change scenarios. Nature, 416:626629.CrossRefGoogle ScholarPubMed
Peterson, A. T., Papes, M., and Kluza, D. A. 2003. Predicting the potential invasive distributions of four alien plant species in North America. Weed Science, 51:863868.CrossRefGoogle Scholar
Peterson, A. T., Sanchez-Cordero, V., Soberon, J., Bartley, J., Buddemeier, R. W., and Navarro-Siguenza, A. G. 2001. Effects of global climate change on geographic distributions of Mexican Cracidae. Ecological Modelling, 144:2130.CrossRefGoogle Scholar
Pielou, E. C. 1966. Species diversity and pattern diversity in the study of ecological succession. Journal Of Theoretical Biology, 10:370383.CrossRefGoogle Scholar
Polishchuk, L. V., and Tseitlin, V. B. 2001. Body mass, population density and offspring number in mammals. Zhurnal Obshchei Biologii, 62:324.Google ScholarPubMed
Poulin, R., and Morand, S. 1997. Parasite body size distributions: interpreting patterns of skewness. International Journal for Parasitology, 27:959964.CrossRefGoogle ScholarPubMed
Pyron, M. 1999. Relationships between geographical range size, body size, local abundance, and habitat breadth in North American suckers and sunfishes. Journal Of Biogeography, 26:549-+CrossRefGoogle Scholar
Rahbek, C., Gotelli, N., Colwell, R., Entsminger, G., Rangel, T., and Graves, G. 2007. Predicting continental-scale patterns of bird species richness with spatially explicit models. Proceedings of the Royal Society B: Biological Sciences, 274:165.CrossRefGoogle ScholarPubMed
Rahbek, C., and Graves, G. 2001. Multiscale assessment of patterns of avian species richness. Proceedings of the National Academy of Sciences of the United States of America, 98:4534.CrossRefGoogle ScholarPubMed
Raia, P., Meloro, C., Loy, A., and Barbera, C. 2006. Species occupancy and its course in the past: macroecological patterns in extinct communities. Evolutionary Ecology Research, 8:181194.Google Scholar
Rangel, T., Diniz-Filho, J., and Bini, L. 2006. Towards an integrated computational tool for spatial analysis in macroecology and biogeography. Global Ecology and Biogeography, 15:321327.CrossRefGoogle Scholar
Reed, R. N. 2003. Interspecific patterns of species richness, geographic range size, and body size among New World venomous snakes. Ecography, 26:107117.CrossRefGoogle Scholar
Rensch, B. 1938. Some problems of geographical variation and species-formation. Proceedings of the Linnean Society of London, 150:275285.CrossRefGoogle Scholar
Ribas, C. R., and Schoereder, J. H., 2006. Is the Rapoport effect widespread? Null models revisited. Global Ecology And Biogeography, 15:614624.CrossRefGoogle Scholar
Rodriguez, M. A., Olalla-Tarraga, M. A., and Hawkins, B. A. 2008. Bergmann's rule and the geography of mammal body size in the Western Hemisphere. Global Ecology And Biogeography, 17:274283.CrossRefGoogle Scholar
Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos, 65:514.CrossRefGoogle Scholar
Rohde, K., Heap, M., and Heap, D. 1993. Rapoport's rule does not apply to marine teleosts and cannot explain latitudinal gradients in species richness. The American Naturalist, 142:116.CrossRefGoogle Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1994. Eastern Pacific Molluscan Provinces And Latitudinal Diversity Gradient - No Evidence For Rapoports Rule. Proceedings Of The National Academy Of Sciences Of The United States Of America, 91:88718874.CrossRefGoogle Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1995. Thermally Anomalous Assemblages Revisited - Patterns in the Extraprovincial Latitudinal Range Shifts of Pleistocene Marine Mollusks. Geology, 23:10711074.2.3.CO;2>CrossRefGoogle Scholar
Roy, K., and Martien, K. K. 2001. Latitudinal distribution of body size in north-eastern Pacific marine bivalves. Journal of Biogeography, 28:485493.CrossRefGoogle Scholar
Ruggiero, A., and Lawton, J. H. 1998. Are there latitudinal and altidudinal Rapoport effects in the geographic ranges of Andean passerine birds? Biological Journal Of The Linnean Society, 63:283304.CrossRefGoogle Scholar
Ruggiero, A., and Werenkraut, V. 2007. One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology And Biogeography, 16:401414.CrossRefGoogle Scholar
Russell, D. A., and Zheng, Z. 1993. A large mamenchisaurid from the Junggar Basin, Xinjiang, People's Republic of China. Canadian Journal of Earth Sciences, 30:20822095.CrossRefGoogle Scholar
Schmidt-Nielsen, K. 1984. Scaling, why is animal size so important? Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Scott, K. 1990. Postcranial dimensions of ungulates as predictors of body mass, p. 301336. In Damuth, J. and MacFadden, B. J. (eds.), Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Sebens, K. P. 2002. Energetic constraints, size gradients, and size limits in benthic marine invertebrates. Integrative and Comparative Biology, 42:853861.CrossRefGoogle ScholarPubMed
Selmi, S., and Boulinier, T. 2004. Distribution-abundance relationship for passerines breeding in Tunisian oases: test of the sampling hypothesis. Oecologia, 139:440445.CrossRefGoogle ScholarPubMed
Sepkoski, J. Jr 1978. A kinetic model of Phanerozoic taxonomic diversity I. Analysis of marine orders. Paleobiology, 4:223251.CrossRefGoogle Scholar
Sibly, R. M., and Brown, J. H. 2007. Effects of body size and lifestyle on evolution of mammal life histories. Proceedings Of The National Academy Of Sciences Of The United States Of America, 104:1770717712.CrossRefGoogle ScholarPubMed
Smith, F. A., and Betancourt, J. L. 1998. Response of bushytailed woodrats (Neotoma cinerea) to late Quaternary climatic change in the Colorado Plateau. Quaternary Research, 47:111.CrossRefGoogle Scholar
Smith, F. A., and Betancourt, J. L. 2003. The effect of Holocene temperature fluctuations on the evolution and ecology of Neotoma (woodrats) in Idaho and northwestern Utah. Quaternary Research, 59:160171.CrossRefGoogle Scholar
Smith, F. A., and Betancourt, J. L. 2006. Predicting woodrat (Neotoma) responses to anthropogenic warming from studies of the palaeomidden record. Journal of Biogeography, 33:20612076.CrossRefGoogle Scholar
Smith, F. A., Betancourt, J. L., and Brown, J. H. 1995. Evolution of body-size in the woodrat over the past 25,000 years of climate-change. Science, 270:20122014.CrossRefGoogle Scholar
Smith, F. A., Brown, J. H., Haskell, J. P., Lyons, S. K., Alroy, J., Charnov, E. L., Dayan, T., Enquist, B. J., Ernest, S. K. M., Hadly, E. A., Jones, K. E., Kaufman, D. M., Marquet, P. A., Maurer, B. A., Niklas, K. J., Porter, W. P., Tiffney, B., and Willig, M. R. 2004. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. American Naturalist, 163:672691.CrossRefGoogle ScholarPubMed
Smith, F. A., Lyons, S. K., Ernest, S. K. M., and Brown, J. H. 2008. Macroecology: more than the division of food and space among species on continents. Progress In Physical Geography, 32:115138.CrossRefGoogle Scholar
Stanley, S. M. 1986. Population size, extinction, and speciation; the fission effect in Neogene Bivalvia. Paleobiology, 12:89110.CrossRefGoogle Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographical range - how so many species coexist in the tropics. American Naturalist, 133:240256.CrossRefGoogle Scholar
Stevens, R. D., Cox, S. B., Strauss, R. E., and Willig, M R. 2003. Patterns of functional diversity across an extensive environmental gradient: vertebrate consumers, hidden treatments and latitudinal trends. Ecology Letters, 6:10991108.CrossRefGoogle Scholar
Taylor, P. H., and Gaines, S. D. 1999. Can Rapoport's rule be rescued? Modeling causes of the latitudinal gradient in species richness. Ecology, 80:24742482.Google Scholar
Thomas, C. D., Cameron, A., Green, R. E., Bakkenes, M., Beaumont, L. J., Collingham, Y. C., Erasmus, B. F. N., de Siqueira, M. F., Grainger, A., Hannah, L., Hughes, L., Huntley, B., van Jaarsveld, A. S., Midgley, G. F., Miles, L., Ortega-Huerta, M. A., Peterson, A. T., Phillips, O. L., and Williams, S. E. 2004. Extinction risk from climate change. Nature, 427:145148.CrossRefGoogle ScholarPubMed
Tognelli, M., and Kelt, D. 2004. Analysis of determinants of mammalian species richness in South America using spatial autoregressive models. Ecography, 27:427436.CrossRefGoogle Scholar
Valentine, J. W., Jablonski, D., Kidwell, S., and Roy, K. 2006. Assessing the fidelity of the fossil record by using marine bivalves. Proceedings Of The National Academy Of Sciences Of The United States Of America, 103:65996604.CrossRefGoogle ScholarPubMed
Valverde, J.-A. 1964. Remarque sur la structure et l'Èvolution des communautés de vertébrés terrestres. I. Structure d'une communauté. II. Rapport entre prédateurs et proies. Terre et Vie, 111:121154.Google Scholar
Valverde, J.-A. 1967. Estructura de una comunidad de vertebrados terrestres. Monografias de la Estacion biologica de Doñana, 1:1129.Google Scholar
Van Valkenburgh, B. 1990. Skeletal and dental predictors of body mass in carnivores. In Damuth, J. and MacFadden, B.J. (eds.), Body size in mammalian paleobiology: estimation and biological implications. Cambridge University Press, Cambridge.Google Scholar
Vaughan, I. P., and Ormerod, S. J. 2005. The continuing challenges of testing species distribution models. Journal of Applied Ecology, 42:720730.CrossRefGoogle Scholar
West, G. B., and Brown, J. H. 2004. Life's universal scaling laws. Physics Today, 57:3642.CrossRefGoogle Scholar
West, G. B., Brown, J. H., and Enquist, B. J. 1997. A general model for the origin of allometric scaling laws in biology. Science, 276:122126.CrossRefGoogle ScholarPubMed
West, G. B., Brown, J. H., and Enquist, B. J. 1999. A general model for the structure and allometry of plant vascular systems. Nature, 400:664667.CrossRefGoogle Scholar
West, G. B., Woodruff, W. H., and Brown, J. H. 2002. Allometric scaling of metabolic rate from molecules and mitochondria to cells and mammals. Proceedings Of The National Academy Of Sciences Of The United States Of America, 99:24732478.CrossRefGoogle ScholarPubMed
Williams, J. W., Shuman, B. N., and Webb, T. 2001. Dissimilarity analyses of late-Quaternary vegetation and climate in eastern North America. Ecology, 82:33463362.Google Scholar
Willig, M. R., Kaufman, D. M., and Stevens, R. D. 2003. Latitudinal gradients of biodiversity: Pattern, process, scale, and synthesis. Annual Review of Ecology Evolution and Systematics, 34:273309.CrossRefGoogle Scholar
Willig, M. R., and Lyons, S. K. 1998. An analytical model of latitudinal gradients of species richness with an empirical test for marsupials and bats in the New World. Oikos, 81:9398.CrossRefGoogle Scholar
Willig, M. R., Lyons, S. K., and Stevens, R. D. 2009. Spatial methods for the macroecological study of bats. In Kunz, T. H. and Parsons, S. (eds.), Ecological and Behavioral Methods for the Study of Bats. Johns Hopkins University Press.Google Scholar
Willis, J. C. 1922. Age and area. Cambridge University Press, Cambridge.Google Scholar