Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-08T14:45:55.254Z Has data issue: false hasContentIssue false

Skeletal homologies of echinoderms

Published online by Cambridge University Press:  21 July 2017

Rich Mooi
Affiliation:
California Academy of Sciences, Golden Gate Park San Francisco, California 94118-4599 USA Paléontologie Analytique, UMR 5561, Centre des Sciences de la Terre 6, Bd. Gabriel, F-21000, Dijon, France
Bruno David
Affiliation:
California Academy of Sciences, Golden Gate Park San Francisco, California 94118-4599 USA Paléontologie Analytique, UMR 5561, Centre des Sciences de la Terre 6, Bd. Gabriel, F-21000, Dijon, France
Get access

Abstract

The impressive array of disparity within the Echinodermata can be explained by the interplay of components (particularly skeletal elements) making up two major body wall regions: axial and extraxial. Axial skeleton comprises paired plate columns of the ambulacra, formed according to the Ocular Plate Rule (OPR) and in association with the water vascular system. Extraxial skeleton (subdivided into two subtypes: perforate and imperforate) is not formed according to the OPR, and new elements can be added anywhere and at any time within extraxial body wall. Recent work on early development of echinoderms reveals that axial skeleton is formed as an integral part of the rudiment, but that extraxial skeleton is derived from the non-rudiment part of the larval body. In addition to displaying such fundamental embryological and ontogenetic differences, the body wall regions have distinctive distributions and topologies that can be used to formulate criteria for their identification in any echinoderm regardless of how esoteric their morphology might be. Like the system of homologies that has long been established for vertebrates, the model of axial and extraxial skeletal types can be used to explore relationships among Recent and fossil taxa alike. Application of the model also leads to reassessment of previously published morphological characters and phylogenies.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agassiz, L. 1841. Monographies d'Échinodermes vivans et fossiles. Échinites, Famille des Clypéasteroides, Seconde Monographic, Des Scutelles. Neuchâtel, Switzerland, 112 p.Google Scholar
Agassiz, A. 1872. Revision of the Echini. Memoirs of the Museum of Comparative Zoology, Harvard, 3:1762.Google Scholar
Agassiz, A. 1904. The Panamic deep sea Echini. Memoirs of the Museum of Comparative Zoology, Harvard, 31:1243.Google Scholar
Bell, B. M. 1976a. Phylogenetic implications of ontogenetic development in the class Edrioasteroidea (Echinodermata). Journal of Paleontology, 50:10011019.Google Scholar
Bell, B. M. 1976b. A study of North American Edrioasteroidea. New York State Museum Memoirs, 21:1447.Google Scholar
Blake, D. B. 1994. Re-evaluation of the Palasteriscidae Gregory, 1900, and the early phylogeny of the Asteroidea (Echinodermata). Journal of Paleontology, 68:123134.Google Scholar
Burke, R. D. 1982. Echinoid metamorphosis: retraction and resorption of larval tissues, p. 513518 In Lawrence, J. (ed.), Echinoderms. A. A. Balkema, Rotterdam.Google Scholar
Bury, H. 1895. The metamorphosis of echinoderms. Quarterly Journal of Microscopical Science, 38:45137.Google Scholar
Byrne, M. 1994. Ophiuroidea, p. 247343 In Harrison, F. W. and Chia, F. S. (eds.), Microscopic Anatomy of Invertebrates. Wiley-Liss, New York.Google Scholar
Cameron, R. A., and Hinegardner, R. T. 1978. Early events of metamorphosis in sea urchins, description and analysis. Journal of Morphology, 157:2132.CrossRefGoogle Scholar
Candia Carnevali, M. D., Bonasoro, F., and Wilkie, I. C. 1995. Coelom and “tinkering” in echinoids: morpho-functional adaptations of the lantern coelom, p. 135165 In Lanzavecchia, G., Valvassori, R., and Candia Carnevali, M. D. (eds.), Body Cavities: Function and Phylogeny. Mucchi Editore, Modena, Italy.Google Scholar
Clark, H. L. 1898. Synapta vivipara: a contribution to the morphology of echinoderms. Boston Society of Natural History Memoirs, 5:5388.Google Scholar
David, B. and Mooi, R. 1996. Embryology supports a new theory of skeletal homologies for the phylum Echinodermata. Comptes Rendus de l'Académie des Sciences, Paris, 319:577584.Google Scholar
David, B. and Mooi, R. In press. Major events in the evolution of echinoderms viewed by the light of embryology. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
David, B., Mooi, R., and Telford, M. 1995. The ontogenetic basis of Lovén's Rule clarifies homologies of the echinoid peristome, p. 155164. In Emson, R. H., Smith, A. B., and Campbell, A. C. (eds.), Echinoderm Research 1995. A. A. Balkema, Rotterdam.Google Scholar
Dawydoff, C. 1948. Embryologie des échinodermes, p. 277363 In Grassé, P. P. (ed.), Traité de Zoologie, Volume 11. Masson, Paris.Google Scholar
Delage, Y., and Hérouard, E. 1903. Les Échinodermes. Traité de Zoologie Concrète, Volume 3. C. Reinwald, Paris, 495 p.Google Scholar
Devanesen, D. W. 1922. The development of the calcareous parts of the lantern of Aristotle in Echinus miliaris. Philosophical Transactions of the Royal Society of London, B93:468485.Google Scholar
Durham, J. W. 1966. Evolution among the Echinoidea. Biological Reviews, 41:368391.Google Scholar
Emlet, R. 1988a. Larval form and metamorphosis of a “primitive” sea urchin, Eucidaris thouarsi (Echinodermata: Echinoidea: Cidaroida), with implications for developmental and phylogenetic studies. Biological Bulletin, 174:419.CrossRefGoogle ScholarPubMed
Emlet, R. 1988b. Crystallographic axes of echinoid genital plates reflect larval form: some phylogenetic implications, p. 299310. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Fell, H. B. 1963. The evolution of the echinoderms. Annual Reports of the Smithsonian Institution, 1962:457490.Google Scholar
Fell, H. B. 1967. Echinoderm ontogeny, p. S60S85 In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Fell, H. B., and Moore, R. C. 1966. General features and relationships of echinozoans, p. U108U118. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Fewkes, J. W. 1887. On the development of the calcareous plates of Amphiura . Bulletin of the Museum of Comparative Zoology, Harvard University, 13:107150.Google Scholar
Gehling, J. G. 1987. Earliest known echinoderm-a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa, 11:337345.Google Scholar
Giese, A. C., Pearse, J. S., and Pearse, V. B. (eds.). 1991. Reproduction of Marine Invertebrates, Volume 6, Echinoderms and Lophophorates. Boxwood Press, Pacific Grove, California, 808 p.Google Scholar
Gordon, I. 1926. The development of the calcareous test of Echinus miliaris . Philosophical Transactions of the Royal Society of London, B214:259312.Google Scholar
Gosselin, P. 1992. Étude morphologique et expérimentale de la période métamorphique chez l'oursin européen Paracentrotus lividus (Lamarck) (Echinodermata: Echinoidea). Mémoires de l'Université Mons-Hainaut, 1992:171.Google Scholar
Harrison, F. W., and Chia, F. S. (eds.). 1994. Microscopic Anatomy of Invertebrates, Volume 14, Echinodermata. Wiley-Liss, New York, 510 p.Google Scholar
Hotchkiss, F. H. C. 1993. A new Devonian ophiuroid (Echinodermata: Oegophiurida) from New York State and its bearing on the origin of ophiuroid upper arm plates. Proceedings of the Biological Society of Washington, 106:6384.Google Scholar
Hotchkiss, F. H. C. In press. Discussion on pentamerism: the five-part pattern of Stromatocystites, Asterozoa, and Echinozoa. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Hyman, L. 1955. The Invertebrates, Volume 4, Echinodermata. McGraw-Hill, New York, 763 p.Google Scholar
Jackson, R. T. 1912. Phylogeny of the Echini, with a revision of the Paleozoic species. Boston Society of Natural History Memoirs, 7:1490.Google Scholar
Jackson, R. T. 1927. Studies of Arbacia punctulata and allies, and of nonpentamerous Echini. Boston Society of Natural History Memoirs, 8:437565.Google Scholar
Koehler, R. 1924. Anomalies, irrégularités et déformations du test chez les Échinides. Annales de l'Institution Océanographique, Paris, Nouvelle Série, 1:159480.Google Scholar
Littlewood, D. T. J. 1995. Echinoderm class relationships revisited, p. 1928. In Emson, R. H., Smith, A. B., and Campbell, A. C. (eds.), Echinoderm Research 1995. A. A. Balkema, Rotterdam.Google Scholar
Littlewood, D. T. J., Clough, K. A., Emson, R. H., and Smith, A. B. In press. Five classes of echinoderm and one school of thought. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Ludwig, H. 1882. Zur Entwicklungsgeschichte des Ophiurenskelettes. Zeitschrift für Wissenschaftliche Zoologie, 36:181200.Google Scholar
Macbride, E. W. 1903. The development of Echinus esculentus, together with some points on the development of E. miliaris and E. acutus . Philosophical Transactions of the Royal Society of London, B 195:285330.Google Scholar
Macbride, E. W. 1914. The development of Echinocardium cordatum. Part I. The external features of development. Quarterly Journal of Microscopical Science, New Series, 59:471486.Google Scholar
Macbride, E. W., and Spencer, W. K. 1938. Two new Echinoidea, Aulechinus and Ectinechinus, and an adult plated holothurian, Eothuria, from the Upper Ordovician of Girvan, Scotland. Philosophical Transactions of the Royal Society of London, B229:91136.Google Scholar
Märkel, K. 1981. Experimental morphology of coronar growth in regular echinoids. Zoomorphology, 97:3152.Google Scholar
Matsumara, T., and Shigei, M. 1988. Collagen biochemistry and the phylogeny of echinoderms, p. 4352. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Melville, R. V., and Durham, J. W. 1966a. Introduction, p. U212U213. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Melville, R. V., and Durham, J. W. 1966b. Skeletal morphology, p. U220U257. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Mooi, R., and David, B. 1993a. Novel skeletal topologies are related to birth in Antarctic sea urchins. Comptes Rendus de l'Académie des Sciences, Paris, 316:341345.Google Scholar
Mooi, R., and David, B. 1993b. Ontogeny and origin of the brooding system in Antarctic urechinid sea urchins (Echinodermata, Holasteroida). Zoomorphology, 113:6978.Google Scholar
Mooi, R., and David, B. 1996. Phylogenetic analysis of extreme morphologies: deep-sea holasteroid echinoids. Journal of Natural History, 30:913953.Google Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: Classical morphology meets modern phylogenetics, p. 8795. In David, B., Guille, A., Feral, J. P., and Roux, M. (eds.), Echinoderms Through Time (Echinoderms Dijon). A. A. Balkema, Rotterdam.Google Scholar
Murakami, S. 1937. On the development of the calcareous plates in an ophiurid larva, Ophiopluteus serratus . Annotationes Zoologicae Japonenses, 16:135147.Google Scholar
Nichols, D. 1962. Echinoderms. Hutchinson and Company, London, 200 p.Google Scholar
Nielsen, C. 1995. Animal Evolution. Interrelationships of the Living Phyla. Oxford University Press, Oxford, 467 p.Google Scholar
Paul, C. R. C. 1967. New Ordovician Bothriocidaridae from Girvan and a reinterpretation of Bothriocidaris Eichwald. Palaeontology, 10:525541.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.Google Scholar
Pearse, V. B., and Pearse, J. S. 1994. Echinoderm phylogeny and the place of concentricycloids, p. 121126. In David, B., Guille, A., Féral, J. P., and Roux, M. (eds.), Echinoderms Through Time (Echinoderms Dijon). A. A. Balkema, Rotterdam.Google Scholar
Raff, R. A., Field, K. G., Ghiselin, M. T., Lane, D. J., Olsen, G. J., Pace, N. R., Parks, A. L., Parr, B. A., and Raff, E. C. 1988. Molecular analysis of distant phylogenetic relationships in echinoderms, p. 2941. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Schatt, P. 1985. L'édification de la face orale au cours du développement direct de Abatus cordatus, oursin incubant subantarctique, p. 339345. In Keegan, B. F. and O'Connor, B. D. S. (eds.), Echinodermata. A. A. Balkema, Rotterdam.Google Scholar
Schatt, P., and Feral, J. P. 1996. Completely direct development of Abatus cordatus, a brooding schizasterid (Echinodermata: Echinoidea) from Kerguelen, with a description of “perigastrulation,” a hypothetical new mode of gastrulation. Biological Bulletin, 190:2444.Google Scholar
Semon, R. 1888. Die Entwicklung der Synapta digitata und die Stammesgeschichte der Echinodermen. Jena Zeitschrift für Wissenschaftliche, 22:1135.Google Scholar
Smiley, S. 1986. Metamorphosis of Stichopus californicus (Echinodermata: Holothuroidea) and its phylogenetic implications. Biological Bulletin, 171:611631.Google Scholar
Smiley, S. 1988. The phylogenetic relationships of holothurians: a cladistic analysis of the extant echinoderm classes, p. 6984. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Smith, A. B. 1984a. Classification of the Echinodermata. Palaeontology, 27:431459.Google Scholar
Smith, A. B. 1984b. Echinoid Paleobiology. Allen and Unwin, London, 190 p.Google Scholar
Smith, A. B. 1988. Fossil evidence for the relationships of extant echinoderm classes and their times of divergence, p. 8597. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Smith, A. B. 1990. Evolutionary diversification of echinoderms during the early Palaeozoic, p. 265286. In Taylor, P. D. and Larwood, G. P. (eds.), Major Evolutionary Radiations. Clarendon Press, Oxford.Google Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Smith, A. B., and Paterson, G. L. J. 1995. Ophiuroid phylogeny and higher taxonomy: morphological, molecular and palaeontological perspectives. Zoological Journal of the Linnean Society, 114:213243.Google Scholar
Smith, M. J., Arndt, A., Gorski, S., and Fajber, E. 1993. The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution, 36:545554.CrossRefGoogle ScholarPubMed
Spencer, W. K., and Wright, C. W. 1966. Morphology and function, p. U4U30. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part U, Echinodermata 3. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Sprinkle, J. 1973. Morphology and evolution of blastozoan echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, Cambridge, Massachusetts, 283 p.Google Scholar
Strathmann, R. 1988. Larvae, phylogeny, and von Baer's Law, p. 5368. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Oxford University Press, Oxford.Google Scholar
Sumrall, C.D., and Sprinkle, J. In press. Phylogenetic analysis of Echinodermata based on primitive fossil taxa. In Mooi, R. and Telford, M. (eds.), Echinoderms: San Francisco. A. A. Balkema, Rotterdam.Google Scholar
Thomson, W. 1862. On the development of Synapta inhaerens O. F. Müller. Quarterly Journal of Microscopical Science, 2:131146.Google Scholar
Ubaghs, G. 1967. General characters of Echinodermata, p. S3S60. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Wada, H., and Satoh, N. 1994. Phylogenetic relationships among extant classes of echinoderms, as inferred from sequences of 18S rDNA, coincide with relationships deduced from the fossil record. Journal of Molecular Evolution, 38:4149.Google Scholar
Wootton, D. M. 1949. The development of Thyonepsolus nutriens Clark. Unpublished Ph.D. dissertation, Stanford University, Stanford, California, 95 p.Google Scholar