Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T20:01:20.279Z Has data issue: false hasContentIssue false

Resampling Methods in Paleontology

Published online by Cambridge University Press:  21 July 2017

Michał Kowalewski
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, VA 24061
Phil Novack-Gottshall
Affiliation:
Department of Biology, Benedictine University, 5700 College Road, Lisle, IL 60532
Get access

Abstract

This chapter reviews major types of statistical resampling approaches used in paleontology. They are an increasingly popular alternative to the classic parametric approach because they can approximate behaviors of parameters that are not understood theoretically. The primary goal of most resampling methods is an empirical approximation of a sampling distribution of a statistic of interest, whether simple (mean or standard error) or more complicated (median, kurtosis, or eigenvalue). This chapter focuses on the conceptual and practical aspects of resampling methods that a user is likely to face when designing them, rather than the relevant mathematical derivations and intricate details of the statistical theory. The chapter reviews the concept of sampling distributions, outlines a generalized methodology for designing resampling methods, summarizes major types of resampling strategies, highlights some commonly used resampling protocols, and addresses various practical decisions involved in designing algorithm details. A particular emphasis has been placed here on bootstrapping, a resampling strategy used extensively in quantitative paleontological analyses, but other resampling techniques are also reviewed in detail. In addition, ad hoc and literature-based case examples are provided to illustrate virtues, limitations, and potential pitfalls of resampling methods.

Type
General Toolkit
Copyright
Copyright © 2010 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alroy, J. 1996. Constant extinction, constrained diversification, and uncoordinated stasis in North American mammals. Palaeogeography, Palaeoclimatology, Palaeoecology, 127:285311.Google Scholar
Alroy, J. 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science, 280:731734.Google Scholar
Alroy, J. In press. Geographic, environmental, and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences (U.S.A.), 98:6261.Google Scholar
Alroy, J., Aberhan, M., Bother, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borrow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomaovch, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science, 321:97100.Google Scholar
Bambach, R. K. 1983. Ecospace utilization and guilds in marine communities through the Phanerozoic, p. 719746. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum, New York.CrossRefGoogle Scholar
Bambach, R. K., Bush, A. M., and Erwin, D. H. 2007. Autecology and the filling of ecospace: key metazoan radiations. Palaeontology, 50:122.Google Scholar
Bonelli, J. R. Jr., Brett, C. E., Miller, A. I., and Bennington, J. B. 2006. Testing for faunal stability across a regional biotic transition: quantifying stasis and variation among recurring coral-rich biofacies in the Middle Devonian Appalachian Basin. Paleobiology, 32:20.Google Scholar
Booth, J. G., and Sarkar, S. 1998. Monte Carlo approximation of bootstrap variances. The American Statistician, 52:354357.Google Scholar
Bush, A. M., Bambach, R. K., and Daley, G. M. 2007a. Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33:7697.Google Scholar
Bush, A. M., Bambach, R. K., and Erwin, D. H. In press. Ecospace utilization during the Ediacaran radiation and the Cambrian eco-plosion. In Laflamme, M. (ed.), Quantifying the Evolution of Early Life: Numerical and Technological Approaches to the Study of Fossils and Ancient Ecosystems.Google Scholar
Bush, A. M., Kowalewski, M., Hoffmeister, A. P., Bambach, R. K., and Daley, G. M. 2007b. Potential paleoecologic biases from size-filtering of fossils: strategies for sieving. PALAIOS, 22:612622.Google Scholar
Bush, A. M., Powell, M. G., Arnold, W. S., Bert, T. M., and Daley, G. M. 2002. Time-averaging, evolution, and morphologic variation. Paleobiology, 28:925.2.0.CO;2>CrossRefGoogle Scholar
Cabin, R. J., and Mitchell, R. J. 2000. To Bonferroni or not to Bonferroni: when and how are the questions. Bulletin of the Ecological Society of America, 81:246248.Google Scholar
Carroll, M., Kowalewski, M., Simnes, M. G., and Goodfriend, G. A. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology, 29:381402.Google Scholar
Chernick, M. R. 2007. Bootstrap Methods: A Guide for Practitioners and Researchers. Wiley-Interscience, New York.Google Scholar
Ciampaglio, C. N. 2002. Determining the role that ecological and developmental constraints play in controlling disparity: examples from the crinoid and blastozoan fossil record. Evolution & Development, 4:170188.Google Scholar
Ciampaglio, C. N., Kemp, M., and McShea, D. W. 2001. Detecting changes in morphospace occupation patterns in the fossil record: characterization and analysis of measures of disparity. Paleobiology, 27:695715.Google Scholar
Clarke, K. R. 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology, 18:117143.Google Scholar
Coddington, J. A., Young, L. H., and Coyle, F. A. 1996. Estimating spider species richness in a southern Appalachian cove hardwood forest. Journal of Arachnology:111128.Google Scholar
Colwell, R. K., and Coddington, J. A. 1994. Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Roya; Society of London, Series B, Biological Sciences, 345:101118.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology, 32:509532.Google Scholar
Currano, E. D. 2009. Patchiness and long-term change in early Eocene insect feeding damage. Paleobiology, 35:484498.Google Scholar
Davison, A. C., and Hinkley, D. V. 1997. Bootstrap Methods and their Application. Cambridge University Press, Cambridge, UK.Google Scholar
Davison, A. C., Hinkley, D. V., and Schechtman, E. 1986. Efficient bootstrap simulation. Biometrika, 73:555566.Google Scholar
Diaconis, P., and Efron, B. 1983. Computer-intensive methods in statistics. Scientific American, 248:116130.Google Scholar
Diciccio, T. J., and Romano, J. P. 1988. A review of bootstrap confidence intervals. Journal of the Royal Statistical Society. Series B (Methodological), 50:338354.Google Scholar
Dietl, G. P., and Alexander, R. R. 2000. Post-Miocene shift in stereotypic naticid predation on confamilial prey from the mid-Atlantic shelf: coevolution with dangerous prey. PALAIOS, 15:414429.Google Scholar
Eble, G. J. 2000. Contrasting evolutionary flexibility in sister groups: disparity and diversity in Mesozoic atelostomate echinoids. Paleobiology, 26:5679.Google Scholar
Edgington, E., and Onghena, P. 2007. Randomization Tests. Chapman & Hall/CRC, New York.Google Scholar
Efron, B. 1979. Bootstrap methods: another look at the jack-knife. The Annals of Statistics, 7:126.Google Scholar
Efron, B. 1983. Estimating the error rate of a prediction rule: improvement on cross-validation. Journal of the American Statistical Association, 78:316331.Google Scholar
Efron, B. 1987. Better bootstrap confidence intervals. Journal of the American Statistical Association, 82:171185.Google Scholar
Efron, B., and Tibshirani, R. J. 1997. An Introduction to the Bootstrap. Chapman & Hall.Google Scholar
Foote, M. 1992. Rarefaction analysis of morphological and taxonomic diversity. Paleobiology, 18:116.Google Scholar
Foote, M. 1993. Discordance and concordance between morphological and taxonomic diversity. Paleobiology, 19:185204.Google Scholar
Foote, M. 1999. Morphological diversity in the evolutionary radiation of Paleozoic and post-Paleozoic crinoids. Paleobiology Memoir, 25 (Supplement): 1116.Google Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology, 31:620.Google Scholar
Foote, M. 2006. Substrate affinity and diversity dynamics of Paleozoic marine animals. Paleobiology, 32:345366.Google Scholar
Gahn, F. J., and Baumiller, T. K. 2004. A bootstrap analysis for comparative taphonomy applied to Early Mississippian (Kinderhookian) crinoids from the Wassonville Cycle of Iowa. PALAIOS, 19:1738.Google Scholar
Gilinsky, N. L. 1991. Bootstrapping and the fossil record, p. 185206. In Gilinsky, N. L. and Signor, P. W. (eds.), Analytical Paleobiology. Short Courses in Paleontology 4. Paleontological Society and University of Tennessee Knoxville, Knoxville, TN.Google Scholar
Gilinsky, N. L., and Bambach, R. K. 1986. The evolutionary bootstrap: a new approach to the study of taxonomic diversity. Paleobiology, 12:251268.Google Scholar
Gilinsky, N. L., and Bennington, J. B. 1994. Estimating numbers of whole individuals from collections of body parts: a taphonomic limitation of the paleontological record. Paleobiology, 20:245258.Google Scholar
Gleason, J. R. 1988. Algorithms for balanced bootstrap simulations. The American Statistician, 42:263266.Google Scholar
Good, P. I. 2006. Resampling Methods: A Practical Guide to Data Analysis. Birkhauser, Boston.Google Scholar
Gotelli, N. J., and Ellison, A. M. 2004. A Primer of Ecological Statistics. Sinauer Associates.Google Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology, 3:2340.Google Scholar
Grey, M., Haggart, J. W., and Smith, P. L. 2008. A new species of Buchia (Bivalvia: Buchiidae) from British Columbia, Canada, with an analysis of buchiid bipolarity. Journal of Paleontology, 82:391397.Google Scholar
Hall, P. 1992. Efficient bootstrap simulations, p. 127143. In Lepage, R. and Billard, L. (eds.), Exploring the Limits of Bootstrap. Wiley, New York City.Google Scholar
Harrington, G. J., and Jaramillo, C. A. 2007. Paratropical floral extinction in the late Palaeocene-early Eocene. Journal of the Geological Society, 164:323332.Google Scholar
Heim, N. A. 2008. A null biogeographic model for quantifying the role of migration in shaping patterns of global taxonomic richness and differentiation diversity, with implications for Ordovician biogeography. Paleobiology, 34:195209.Google Scholar
Heim, N. A. 2009. Stability of regional brachiopod diversity structure across the Mississippian/Pennsylvanian boundary. Paleobiology, 35:393.Google Scholar
Herrera-Cubilla, A., Dick, M. H., Sanner, J. A., and Jackson, J. B. C. 2006. Neogene Cupuladriidae of tropical America. I: Taxonomy of Recent Cupuladria from opposite sides of the Isthmus of Panama. Journal of Paleontology, 80:245263.Google Scholar
Hjorth, J. S. U. 1994. Computer Intensive Statistical Methods: Validation Model Selection and Bootstrap. Chapman & Hall/CRC, London.Google Scholar
Hoffmeister, A. P., Kowalewski, M., Baumiller, T. K., and Bambach, R. K. 2004. Drilling predation on Permian brachiopods and bivalves from the Glass Mountains, west Texas. Acta Palaeontologica Polonica, 49:443454.Google Scholar
Holdener, E. J. 1994. Numerical taxonomy of fenestrate bryozoans: evaluation of methodologies and recognition of intraspecific variation. Journal of Paleontology; 68:12011214.Google Scholar
Holland, S. M. 1995. The stratigraphic distribution of fossils. Paleobiology, 21:92109.Google Scholar
Hopkins, M. J., and Webster, M. 2009. Ontogeny and geographic variation of a new species of the corynexochine trilobite Zacanthopsis (Dyeran, Cambrian). Journal of Paleontology, 83:524547.Google Scholar
Hora, S. C., and Wilcox, J. B. 1982. Estimation of error rates in several-population discriminant analysis. Journal of Marketing Research, 19:5761.Google Scholar
Hunt, G., and Chapman, R. E. 2001. Evaluating hypotheses of instar-grouping in arthropods: a maximum likelihood approach. Paleobiology, 27:466.Google Scholar
Huntley, J. W., Xiao, S., and Kowalewski, M. 2006. 1.3 billion years of acritarch history: an empirical morphospace approach. Precambrian Research, 144:5368.Google Scholar
Huntley, J. W., Yanes, Y., Kowalewski, M., Castillo, C., Delgado-Huertas, A., Ibáñez, M., Alonso, M. R., Ortiz, J. E., and Torres, T. D. 2008. Testing limiting similarity in Quaternary terrestrial gastropods. Paleobiology, 34:378388.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology, 52:577586.CrossRefGoogle ScholarPubMed
Ivany, L. C., Brett, C. E., Wall, H. L. B., Wall, P. D., and Handley, J. C. 2009. Relative taxonomic and ecologic stability in Devonian marine faunas of New York State: a test of coordinated stasis. Paleobiology, 35:499524.Google Scholar
Kitchell, J. A., and MacLeod, N. 1988. Macroevolutionary interpretations of symmetry and synchroneity in the fossil record. Science, 240:11901195.Google Scholar
Koch, C. F. 1991. Sampling from the fossil record, p. 418. In Gilinsky, N. L. and Signor, P. W. (eds.), Analytical Paleobiology. Short Courses in Paleontology 4. Paleontological Society and University of Tennessee Knoxville, Knoxville, TN.Google Scholar
Kowalewski, M. 1996. Taphonomy of a living fossil; the lingulide brachiopod Glottidia palmeri Dall from Baja California, Mexico. PALAIOS, 11:244265.Google Scholar
Kowalewski, M., and Finnegan, S. 2010. Theoretical diversity of the marine biosphere. Paleobiology, 36:115.Google Scholar
Kowalewski, M., and Rimstidt, J. D. 2003. Average lifetime and age spectra of detrital grains: toward a unifying theory of sedimentary particles. Journal of Geology, 111:427439.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: the evils and virtues of time-averaging. Paleobiology, 24:287304.Google Scholar
Kowalewski, M., Dyreson, E., Marcot, J. D., Vargas, J. A., Flessa, K. W., and Hallman, D. P. 1997. Phenetic discrimination of biometric simpletons: paleobiological implications of morphospecies in the lingulide brachiopod Glottidia . Paleobiology, 23:444469.Google Scholar
Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Barbour Wood, S. L., and Hoffmeister, A. P. 2006. Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32:533561.Google Scholar
Krause, R. A. Jr. 2004. An assessment of morphological fidelity in the sub-fossil record of a terebratulide brachiopod. PALAIOS, 19:460476.Google Scholar
Krause, R. A. Jr., Barbour Wood, S. L., Kowalewski, M., Kaufman, D., Romanek, C. S., Simoes, M. G., and Wehmiller, J. F. 2010. Quantitative estimates and modeling of time averaging in bivalves and brachiopods. Paleobiology; 36:428452.Google Scholar
Lombardi, C. M., and Hurlbert, S. H. 2009. Misprescription and misuse of one-tailed tests. Austral Ecology, 34:447468.Google Scholar
Lupia, R. 1999. Discordant morphological disparity and taxonomic diversity during the Cretaceous angiosperm radiation: North American pollen record. Paleobiology, 25:128.Google Scholar
Magurran, A. E. 2003. Measuring Biological Diversity. Wiley-Blackwell, New York City.Google Scholar
Manly, B. F. J. 2004. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, Cornwall, Great Britain.Google Scholar
Manly, B. F. J., and McAlevey, L. 1987. A randomization alternative to the Bonferroni inequality with multiple F tests. Proceedings of the Second International Tampere Conference in Statistics, 2:567573.Google Scholar
Marko, P. B., and Jackson, J. B. C. 2001. Patterns of morphological diversity among and within arcid bivalve species pairs separated by the Isthmus of Panama. Journal of Paleontology, 75:590606.Google Scholar
McLachlan, G. J., and Basford, K. E. 1988. Mixture Models: Inference and Applications to Clustering. Marcel Dekker, New York.Google Scholar
Miller, A. I., and Connolly, S. R. 2001. Substrate affinities of higher taxa and the Ordovician Radiation. Paleobiology, 27:768778.Google Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology, 22:304309.Google Scholar
Monchot, H., and Léchelle, J. 2002. Statistical nonparametric methods for the study of fossil populations. Paleobiology, 28:55.Google Scholar
Navarro, N., Neige, P., and Marchand, D. 2005. Faunal invasions as a source of morphological constraints and innovations? The diversification of the early Cardioceratidae (Ammonoidea; Middle Jurassic). Paleobiology, 31:98116.2.0.CO;2>CrossRefGoogle Scholar
Novack-Gottshall, P. M. 2006. Distinguishing among the four open hypotheses for long-term trends in ecospace diversification: a null model approach. GSA Abstracts with Programs, 38:86.Google Scholar
Novack-Gottshall, P. M. 2007. Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33:273294.Google Scholar
Novack-Gottshall, P. M. 2008a. Ecosystem-wide body-size trends in Cambrian–Devonian marine invertebrate lineages. Paleobiology, 34:210228.Google Scholar
Novack-Gottshall, P. M. 2008b. Modeling community structure across hierarchical scales: A case study using Late Ordovician deep-subtidal assemblages from the Cincinnati Arch. GSA Abstracts with Programs, 40:324.Google Scholar
Novack-Gottshall, P. M., and Lanier, M. A. 2008. Scale-dependence of Cope's rule in body size evolution of Paleozoic brachiopods. Proceedings of the National Academy of Sciences (U.S.A.), 105:5430.CrossRefGoogle ScholarPubMed
Novack-Gottshall, P. M., and Miller, A. I. 2003. Comparative taxonomic richness and abundance of Late Ordovician gastropods and bivalves in mollusc-rich strata of the Cincinnati Arch. PALAIOS, 18:559571.Google Scholar
Olszewski, T. D., and Patzkowsky, M. E. 2001. Measuring recurrence of marine biotic gradients: a case study from the Pennsylvanian-Permian Midcontinent. PALAIOS, 16:444460.Google Scholar
Pandolfi, J. M. 1996. Limited membership in Pleistocene reef coral assemblages from the Huon Peninsula, Papua New Guinea: constancy during global change. Paleobiology, 22:152176.Google Scholar
Perneger, T. V. 1998. What's wrong with Bonferroni adjustments. British Medical Journal, 316:1236.Google Scholar
Plotnick, R. E. 1989. Application of bootstrap methods to reduced major axis line fitting. Systematic Zoology, 38:144153.Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology, 40:11781190.Google Scholar
Raup, D. M. 1967. Geometric analysis of shell coiling: coiling in ammonoids. Journal of Paleontology, 41:4365.Google Scholar
Raup, D. M. 1975. Taxonomic diversity estimation using rarefaction. Paleobiology, 1:333342.Google Scholar
Raup, D. M. 1977. Stochastic models in evolutionary paleobiology, p. 5978. In Hallam, A. (ed.), Patterns of Evolution as Illustrated by the Fossil Record. Volume 5. Elsevier Scientific Publishing Company, Amsterdam.Google Scholar
Raup, D. M. 1979. Size of the Permo-Triassic bottleneck and its evolutionary implications. Science, 206:217218.Google Scholar
Raup, D. M., and Gould, S. J. 1974. Stochastic simulation and evolution of morphology—towards a nomothetic paleontology. Systematic Zoology, 23:305322.Google Scholar
Raup, D. M., and Michelson, A. 1965. Theoretical morphology of the coiled shell. Science, 147:12941295.Google Scholar
Raup, D. M., Gould, S. J., Schopf, T. J. M., and Simberloff, D. S. 1973. Stochastic models of phylogeny and the evolution of diversity. Journal of Geology, 81:525542.Google Scholar
Rosenzweig, M. L. 2003. Reconciliation ecology and the future of species diversity. Oryx, 37:194205.Google Scholar
Ruxton, G. D., and Neuhäuser, M. 2010. When should we use one-tailed hypothesis testing? Methods in Ecology and Evolution, 1:114117.Google Scholar
Sanders, H. L. 1968. Marine benthic diversity: a comparative study. American Naturalist, 102:243.Google Scholar
Scarponi, D., and Kowalewsi, M. 2007. Sequence stratigraphic anatomy of diversity patterns: Late Quaternary benthic mollusks of the Po Plain, Italy. PALAIOS, 22:296305.Google Scholar
Shen, B., Dong, L., Xiao, S., and Kowalewski, M. 2008. The Avalon explosion: evolution of Ediacara morphospace. Science, 319:8184.Google Scholar
Siegfried, T. 2010. Odds are, it's wrong: Science fails to face the shortcomings of statistics. Science News, 177:26.Google Scholar
Sims, H. J., and McConway, K. J. 2003. Nonstochastic variation of species-level diversification rates within angiosperms. Evolution, 57:460479.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry. W.H. Freeman and Company, New York, 887 p.Google Scholar
Stanley, S. M., Signor, P. W., Lidgard, S., and Karr, A. F. 1981. Natural clades differ from “random” clades: simulations and analyses. Paleobiology, 7:115127.Google Scholar
Tipper, J. C. 1979. Rarefaction and rarefiction: the use and abuse of a method in paleoecology. Paleobiology, 5:423434.Google Scholar
Tomasovych, A., and Kidwell, S. M. 2009. Preservation of spatial and enviromnental gradients by death assemblages. Paleobiology, 35:119145.Google Scholar
Tukey, J. W. 1958. Bias and confidence in not quite large samples. Annals of Mathematical Statistics, 29:614.Google Scholar
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology, 29:455.Google Scholar
Winch, R. F., and Campbell, D. T. 1969. Proof? No. Evidence? Yes. The significance of tests of significance. American Sociologist, 4:140143.Google Scholar
Wood, A. R., Zelditch, M. L., Rountrey, A. N., Eiting, T. P., Sheets, H. D., and Gingerich, P. D. 2007. Multivariate stasis in the dental morphology of the Paleocene-Eocene condylarth Ectocion . Paleobiology, 33:248260.Google Scholar
Zar, J. H. 2009. Biostatistical Analysis. Prentice Hall, Englewood Cliffs, NJ, 718 p.Google Scholar

References

Good, P. I. 2006. Resampling Methods: A Practical Guide to Data Analysis. Birkhauser, Boston.Google Scholar
Manly, B. F. J. 2004. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall Cornwall, Great Britain.Google Scholar
Sokal, R. R., and Rohlf, F. J. 1995. Biometry. W.H. Freeman and Company, New York.Google Scholar