Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-09T13:31:01.959Z Has data issue: false hasContentIssue false

Reconstructing Paleoseasonality from Accretionary Skeletal Carbonates—Challenges and Opportunities

Published online by Cambridge University Press:  21 July 2017

Linda C. Ivany*
Affiliation:
Department of Earth Sciences, Syracuse University, Syracuse, NY 13244 USA. [email protected]
Get access

Abstract

Seasonal temperature variation at any location is most strongly regulated by the annual cycle of solar insolation, which is controlled by latitude and orbital parameters; other factors are continentality, albedo feedbacks, stratification and advection, and water depth. Seasonal minima, maxima, and range vary with change in mean annual temperature (MAT) across latitudes; seasonal variation in ocean-water temperature is highest in the mid-latitudes. Seasonal temperature range at depth is likely to be less than that at the sea surface. The chemistry of accretionary biogenic carbonate can preserve a record of seasonal temperature variation experienced by an organism over some portion of its ontogeny. Sampling early parts of ontogenies will yield a more complete temperature record because growth is faster (so temporal resolution is higher) and more likely to be continuous throughout the year. Biases due to preferential season of growth can be recognized by characteristic patterns of isotope data when plotted versus distance along the ontogenetic trajectory. Multiple years are needed to reliably characterize seasonal temperature range and inter-annual variability for a stratigraphic horizon in a given region; single-shell studies are less useful in this regard unless they contain very long records. Data from multiple time intervals or regions using the same taxon, sampled the same way, and from the same facies can establish meaningful trends in average temperature and seasonal range. Deep-time studies exploring seasonal temperature extremes and ranges can be coupled with proxies for mean annual temperature to offer a more complete understanding of changing climate conditions through time.

Type
Research Article
Copyright
Copyright © 2012 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, T. F., and Arthur, M. A. 1983. Stable isotopes of oxygen and carbon and their application to sedimentologic and paleoenvironmental problems, p. 1151 In Arthur, M. A., Anderson, T. F., Kaplan, I. R., Veizer, J., and Land, L. S. (eds.), Stable Isotopes in Sedimentary Geology. SEPM Short Course No. 10, Tulsa, OK.CrossRefGoogle Scholar
Andreasson, F. P., and Schmitz, B. 1996. Winter and summer temperatures of the early middle Eocene of France from Turritella δ18O profiles. Geology, 24:10671070.Google Scholar
Andreasson, F. P., and Schmitz, B. 1998. Tropical Atlantic seasonal dynamics in the early middle Eocene from stable oxygen and carbon isotope profiles of mollusk shells. Paleoceanography, 13:183192.Google Scholar
Andreasson, F. P., and Schmitz, B. 2000. Temperature seasonality in the early middle Eocene North Atlantic region: Evidence from stable isotope profiles of marine gastropod shells. GSA Bulletin, 112:628640.Google Scholar
Arthur, M. A., Williams, D. F., and Jones, D. S. 1983. Seasonal temperature-salinity changes and thermocline development in the mid-Atlantic Bight as recorded by the isotopic composition of bivalves. Geology, 11:655659.Google Scholar
Austin, W. E. N., Cage, A. G., and Scourse, J. D. 2006. Mid-latitude shelf seas: a NW European perspective on the seasonal dynamics of temperature, salinity and oxygen isotopes. The Holocene, 16:937947.Google Scholar
Baldini, L. M., Walker, S. E., Railsback, L. B., Baldini, J. U. L., and Crowe, D. E. 2007. Isotopic ecology of the modern land snail Cerion, San Salvador, Bahamas: preliminary advances toward establishing a low-latitude island paleoenvironmental proxy. PALAIOS, 22:174187 10.2110/palo.2005.p05.091r.Google Scholar
Baumiller, T. K. 2001. The use of stable isotopes in crinoid biology and paleobiology, p. 107112 In Barker, M. (ed.), Echinoderms 2000. Swets and Zeitlinger, Lisse.Google Scholar
Beard, J. A., Ivany, L. C., and Runnegar, B. 2012. Seasonal variation of carbon and oxygen isotopes from the Permian of southeastern Australia, as recorded by a circumpolar Gondwanan bivalve (Eurydesma Morris 1845). Geological Society of America Abstracts with Programs, 44:104.Google Scholar
Beelaerts, V., De Ridder, F., Schmitz, N., Bauwens, M., Dehairs, F., Schoukens, J., and Pintelon, R. 2009. On the elimination of bias averaging-errors in proxy records. Mathematical Geosciences, 41:129144 10.1007/s11004-008-9193-1.Google Scholar
Beelaerts, V., De Ridder, F., Schmitz, N., Bauwens, M., and Pintelon, R. 2010. Time-series reconstruction from natural archive data with the averaging effect taken into account. Mathematical Geosciences, 42:705722 10.1007/s11004-008-9193-1.Google Scholar
Bemis, B., and Geary, D. H. 1996. The usefulness of bivalve stable isotope profiles as environmental indicators; data from the eastern Pacific Ocean and the southern Caribbean Sea. Palaios, 11:328339.CrossRefGoogle Scholar
Bice, K. L., Arthur, M. A., and Marincovich, L. J. 1996. Late Paleocene Arctic Ocean shallow-marine temperatures from mollusc stable isotopes. Paleoceanography, 11:241249.CrossRefGoogle Scholar
Bigg, G. R., and Rohling, E. J. 2000. An oxygen isotope data set for marine water. Journal of Geophysical Research, 105:85278535.Google Scholar
Böhm, F., Joachimski, M. M., Dullo, W.-C., Eisenhauer, A., Lehnert, H., Reitner, J., and Wörheide, G. 2000. Oxygen isotope fractionation in marine aragonite of coralline sponges. Geochimica et Cosmochimica Acta, 64:16951703.CrossRefGoogle Scholar
Bowen, G. J., and Wilkinson, B. H. 2002. Spatial distribution of δ18O in meteoric precipitation. Geology, 30:315318.Google Scholar
Brand, U. 2004. Carbon, oxygen and strontium isotopes in Paleozoic carbonate components: an evaluation of original seawater-chemistry proxies. Chemical Geology, 204:2344.Google Scholar
Bryant, J. D., Froelich, P. N., Showers, W. J., and Genna, B. J. 1996. Biologic and climatic signals in the oxygen isotopic composition of Eocene–Oligocene equid enamel phosphate. Palaeogeography, Palaeoclimatology, Palaeoecology, 126:7589.Google Scholar
Budd, D. A., and Hiatt, E. E. 1993. Mineralogical stabilization of high-magnesium calcite: geochemical evidence for intracrystal recrystallization within Holocene porcellaneous foraminifera. Journal of Sedimentary Petrology, 63:261274.Google Scholar
Buening, N., and Carlson, S. J. 1992. Geochemical investigation of growth in selected Recent articulate brachiopods. Lethaia, 25:331345.Google Scholar
Buening, N., and Spero, H. J. 1996. Oxygen- and carbon-isotope analyes of the articulate brachiopod Laqueus californianus: a recorder of environmental changes in the subeuphotic zone. Marine Biology, 127:105114.Google Scholar
Buick, D. P., and Ivany, L. C. 2004. 100 years in the dark: extreme longevity of Eocene bivalves from Antarctica. Geology, 32:921924.Google Scholar
Butler, P. G., Richardson, C. A., Scourse, J. D., Wanamaker, A. D. J., Shammon, T. M., and Bennell, J. D. 2010. Marine climate in the Irish Sea: analysis of a 489-year marine master chronology derived from growth increments in the shell of the clam Arctica islandica . Quaternary Science Reviews, 29:16141632 10.1016/j.quascirev.2009.07.010.Google Scholar
Carpenter, S. J., and Lohmann, K. C. 1995. δ18O and δ13C values of modern brachiopod shells Geochimica et Cosmochimica Acta, 59:37493764.Google Scholar
Climap. 1981. Seasonal reconstructions of the Earth's surface at the last glacial maximum. Geological Society of America Tech Rep MC-36.Google Scholar
Cochran, J. K., Kallenberg, K., Landman, N. H., Harries, P. J., Weinreb, D., Turekian, K. K., Beck, A. J., and Cobban, W. A. 2010. Effect of diagenesis on the Sr, O, and C isotope composition of late Cretaceous mollusks from the Western Interior Seaway of North America. American Journal of Science, 310:6988 10.2475/02.2010.01.CrossRefGoogle Scholar
Coma, R., Ribes, M., Gili, J.-M., and Zabala, M. 2000. Seasonality in coastal benthic ecosystems. Trends in ecology & evolution, 15:448453.Google Scholar
Coplen, T. B., and Kendall, C. 2000. Stable hydrogen and oxygen isotope ratios for selected sites of the U.S. Geological Survey's NASQAN and Benchmark Surface-water Networks, U.S. Geological Survey Open File Report 00-160. 409 p.CrossRefGoogle Scholar
Coxall, H. K., Wilson, P. A., Pälike, H., Lear, C. H., and Backman, J. 2005. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature, 433:5357 10.1038/nature03186.Google Scholar
Craig, H., and Gordon, L. I. 1965. Deuterium and oxygen 18 variations in the ocean and the marine atmosphere. Marine Geochemistry, 3:277374.Google Scholar
Cristini, L., Grosfeld, K., Butzin, M., and Lohmann, G. 2012. Influence of the opening of the Drake Passage on the Cenozoic Antarctic Ice Sheet: A modeling approach. Palaeogeography, Palaeoclimatology, Palaeoecology, 339–341:6673. 10.1016/j.palaeo.2012.04.023.Google Scholar
Crowley, K. D., Duchon, C. E., and Rhi, J. 1986a. Climate record in varved sediments of the Eocene Green River Formation. Journal of Geophysical Research Atmospheres, 91:86378647 doi:10.1029/JD09liD08p08637.Google Scholar
Crowley, T. J., Short, D. A., Mengel, J. G., and North, G. R. 1986b. Role of Seasonality in the Evolution of Climate during the Last 100 Million Years. Science, 231:579584.Google Scholar
Curry, G. B., and Fallick, A. E. 2002. Use of stable oxygen isotope determinations from brachiopod shells in palaeoenvironmental reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology, 182:133143.CrossRefGoogle Scholar
Davies, A., Kemp, A. E. S., and Pälike, H. 2011. Tropical ocean-atmosphere controls on inter-annual climate variability in the Cretaceous Arctic. Geophysical Research Letters, 38. 10.1029/2010gl046151.Google Scholar
De Brauwere, A., De Ridder, F., Pintelon, R., Meersmans, J., Schoukens, J., and Dehairs, F. 2008. Identification of a periodic time series from an environmental proxy record. Computers & Geosciences, 34:17811790 10.1016/j.cageo.2008.01.007.Google Scholar
De Brauwere, A., De Ridder, F., Pintelon, R., Schoukens, J., and Dehairs, F. 2009. A comparative study of methods to reconstruct a periodic time series from an environmental proxy record. Earth-Science Reviews, 95:97118 10.1016/j.earscirev.2009.04.002.Google Scholar
De Ridder, F., De Brauwere, A., Pintelon, R., Schoukens, J., Dehairs, F., Baeyens, W., and Wilkinson, B. H. 2007. Comment on: Paleoclimatic inference from stable isotope profiles of accretionary biogenic hardparts—a quantitative approach to the evaluation of incomplete data, by Wilkinson, B.H., Ivany, L.C., 2002. Palaeogeogr. Palaeocl. Palaeoecol. 185, 95–114. Palaeogeography, Palaeoclimatology, Palaeoecology, 248:473476 10.1016/j.palaeo.2006.08.004.Google Scholar
De Ridder, F., Pintelon, R., Schoukens, J., Gillikin, D. P., Luc, A., Baeyens, W., De Brauwere, A., and Dehairs, F. 2004. Decoding nonlinear growth rates in biogenic environmental archives. Geochemistry Geophysics Geosystems, 5. 10.1029/2004gc000771.Google Scholar
Deconto, R. M., Galeotti, S., Pagani, M., Tracy, D., Schaefer, K., Zhang, T., Pollard, D., and Beerling, D. J. 2012. Past extreme warming events linked to massive carbon release from thawing permafrost. Nature, 484:8791 10.1038/nature10929.Google Scholar
Deconto, R. M., and Pollard, D. 2003. Rapid Cenozoic glaciation of Antarctica triggered by declining atmospheric CO2 . Nature, 421:245249.Google Scholar
Dekens, P. S., Ravelo, A. C., and Mccarthy, M. 2007. Warm upwelling regions in the Pliocene warm period. Paleoceanography, 22. 10.1029/2006PA001394.Google Scholar
Denton, G., Alley, R., Comer, G., and Broecker, W. 2005. The role of seasonality in abrupt climate change. Quaternary Science Reviews, 24:11591182 10.1016/j.quascirev.2004.12.002.Google Scholar
Dettman, D. L., Kohn, M. J., Quade, J., Ryerson, F. J., Ojha, T. P., and Hamidullah, S. 2001. Seasonal stable isotope evidence for a strong Asian monsoon throughout the past 10.7 m.y. Geology, 29:3134.Google Scholar
Dettman, D. L., and Lohmann, K. C. 1993. Seasonal change in Paleogene surface water δ18O: Fresh-water bivalves of western North America, p. 153163 In Swart, P. K., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records. American Geophysical Union.Google Scholar
Dettman, D. L., and Lohmann, K. C. 1995. Microsampling carbonates for stable isotope and minor element analysis: physical separation of samples on a 20 micrometer scale. Journal of Sedimentary Research, 65:566569.Google Scholar
Dettman, D. L., Reische, A. K., and Lohmann, K. C. 1999. Controls on stable isotope composition of seasonal growth bands in aragonitic fresh-water bivalves (Unionidae). Geochimica et Cosmochimica Acta, 63:10491057.Google Scholar
Devereux, I. 1967. Temperature measurements from oxygen isotopic ratios of fish otoliths. Science, 155:16841685.Google Scholar
Dorval, E., Piner, K., Robertson, L., Reiss, C. S., Javor, B., and Vetter, R. 2011. Temperature record in the oxygen stable isotopes of Pacific sardine otoliths: experimental vs. wild stocks from the Southern California Bight. Journal of Experimental Marine Biology and Ecology, 397:136143.Google Scholar
Douglas, P., Ivany, L., Pagani, M., Hollis, C., Beu, A., Zaarur, S., Houben, S., Sluijs, A., and Affek, H. 2011. Eocene high southern latitude sea surface temperatures: New constraints from clumped isotope paleothermometry. Eos Trans. AGU Fall Meet. Suppl. San Francisco. Google Scholar
Dutton, A., Huber, B. T., Lohmann, K. C., and Zinsmeister, W. J. 2007. High-resolution stable isotope profiles of a dimitobelid belemnite: implications for paleodepth habit and late Maastrichtian climate seasonality. Palaios, 22:642650 10.2110/palo.2005.p05–064r.Google Scholar
Dutton, A., Wilkinson, B. H., Welker, J. M., Bowen, G. J., and Lohmann, K. C. 2005. Spatial distribution and seasonal variation in 18O/16O of modern precipitation and river water across the conterminous USA. Hydrological Processes, 19:41214146 10.1002/hyp.5876.CrossRefGoogle Scholar
Dutton, A. L., Lohmann, K. C., and Zinsmeister, W. J. 2002. Stable isotope and minor element proxies for Eocene climate of Seymour Island, Antarctica. Paleoceanography, 17:doi:10.1029/2000PA000593.Google Scholar
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M. 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459:969–73 10.1038/nature08069.Google Scholar
Fairchild, I. J., Smith, C. L., Baker, A., Fuller, L., Spötl, C., Mattey, D., Mcdermott, F., and Mcdermott, E.I.M.F. 2006. Modification and preservation of environmental signals in speleothems. Earth-Science Reviews, 75:105153 10.1016/j.earscirev.2005.08.003.Google Scholar
Fan, M., and Dettman, D. L. 2009. Late Paleocene high Laramide ranges in northeast Wyoming: Oxygen isotope study of ancient river water. Earth and Planetary Science Letters, 286:110121.Google Scholar
Fenger, T., Surge, D., Schöne, B., and Milner, N. 2007. Sclerochronology and geochemical variation in limpet shells (Patella vulgata): A new archive to reconstruct coastal sea surface temperature. Geochemistry Geophysics Geosystems, 8. 10.1029/2006gc001488.Google Scholar
Fisher, D. C., Fox, D. L., and Agenbroad, L. D. 2003. Tusk growth rate and season of death of Mammuthus columbi from Hot Springs, South Dakota, USA, p. 117133 In Reumer, J. W. F., De Vos, J., and Mol, D. (eds.), Advances in Mammoth Research.Google Scholar
Folland, C. 2005. Assessing bias corrections in historical sea surface temperature using a climate model. International Journal of Climatology, 25:895911 10.1002/joc.1171.Google Scholar
Folland, C. K., and Parker, D. E. 1995. Corrections of instrumental biases in historical sea surface temperature data. Quarterly Journal of the Royal Meteorological Society, 121:319367.Google Scholar
Fox, D. L., Fisher, D. C., Vartanyan, S., Tikhonov, A. N., Mol, D., and Buigues, B. 2007. Paleoclimatic implications of oxygen isotopic variation in late Pleistocene and Holocene tusks of Mammuthus primigenius from northern Eurasia. Quaternary International, 169–170:154165. 10.1016/j.quaint.2006.09.001.Google Scholar
Fraile, I., Mulitza, S., and Schulz, M. 2009. Modeling planktonic foraminiferal seasonality: Implications for sea-surface temperature reconstructions. Marine Micropaleontology, 72:19 10.1016/j.marmicro.2009.01.003.Google Scholar
Fricke, H. C., Hencecroth, J., and Hoerner, M. E. 2011. Lowland-upland migration of sauropod dinosaurs during the Late Jurassic epoch. Nature, 480:513–5 10.1038/nature10570.Google Scholar
Fricke, H. C., and O'Neil, J. R. 1996. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126:9199.Google Scholar
Galeotti, S., Von Der Heydt, A., Huber, M., Bice, D., Dijkstra, H., Jilbert, T., Lanci, L., and Reichart, G.-J. 2010. Evidence for active El Niño Southern Oscillation variability in the late Miocene greenhouse climate. Geology, 38:419422 10.1130/G30629.1.Google Scholar
Gillikin, D. P. 2005. Strong biological controls on Sr/Ca ratios in aragonitic marine bivalve shells. Geochemistry Geophysics Geosystems, 6. 10.1029/2004gc000874.Google Scholar
Gillikin, D. P., De Ridder, F., Ulens, H., Elskens, M., Keppens, E., Baeyens, W., and Dehairs, F. 2005. Assessing the reproducibility and reliability of estuarine bivalve shells (Saxidomus giganteus) for sea surface temperature reconstruction: Implications for paleoclimate studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 228:7085 10.1016/j.palaeo.2005.03.047.Google Scholar
Gillikin, D. P., Lorrain, A., Meng, L., and Dehairs, F. 2007. A large metabolic carbon contribution to the δ13C record in marine aragonitic bivalve shells. Geochimica et Cosmochimica Acta, 71:29362946 10.1016/j.gca.2007.04.003.Google Scholar
Goewert, A., Surge, D., Carpenter, S. J., and Downing, J. 2007. Oxygen and carbon isotope ratios of Lampsilis cardium (Unionidae) from two streams in agricultural watersheds of Iowa, USA. Palaeogeography, Palaeoclimatology, Palaeoecology, 252:637648 10.1016/j.palaeo.2007.06.002.Google Scholar
Gooday, A. J. 2002. Biological responses to seasonally varying fluxes of organic matter to the ocean floor: a review. Journal of Oceanography, 58:305332.Google Scholar
Goodwin, D. H., Flessa, K. W., Schone, B. R., and Dettman, D. L. 2001. Cross-calibration of daily growth increments, stable isotopic variation, and temperature in the Gulf of California bivalve mollusk Chione cortezi: Implications for paleoenvironmental analysis. Palaios, 16:387398.2.0.CO;2>CrossRefGoogle Scholar
Goodwin, D. H., Schone, B. R., and Dettman, D. L. 2003. Resolution and fidelity of oxygen isotopes as paleotemperature proxies in bivalve mollusk shells: Models and observations. Palaios, 18:110125.2.0.CO;2>CrossRefGoogle Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology, 23:10441048.Google Scholar
Grossman, E. L. 2012. Applying oxygen isotope paleothermometry in deep time. In Ivany, L. C., and Huber, B. T. (eds.), Reconstructing Earth's Deep-Time Climate: The State of the Art in 2012. Paleontological Society Papers, v. 18.Google Scholar
Grossman, E. L., and Ku, T.-L. 1986. Oxygen and carbon isotope fractionation in biogenic aragonite: temperature effects. Chemical Geology, 59:5974.Google Scholar
Guilderson, T. P., Fairbanks, R. G., and Rubenstone, J. L. 2001. Tropical Atlantic coral oxygenisotopes: glacial-interglacial sea surfcce temperatures and climate change. Marine Geology, 172:7589.Google Scholar
Haarmann, T., Hathorne, E. C., Mohtadi, M., Groeneveld, J., Kölling, M., and Bickert, T. 2011. Mg/Ca ratios of single planktonic foraminifer shells and the potential to reconstruct the thermal seasonality of the water column. Paleoceanography, 26. 10.1029/2010PA002091.Google Scholar
Haug, G. H., A., G., Sigman, D. M., Rosell-Mele, A., Swann, G. E. A., Tiedemann, R., Jaccard, S. L., Bollmann, J., Maslin, M. A., Leng, M. J., and Eglinton, G. 2005. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 433:821825.Google Scholar
Hays, J. D., Imbrie, J., and Shackleton, N. J. 1976. Variations in the Earth's orbit: pacemaker of the ice ages. Science, 194:11211132.CrossRefGoogle ScholarPubMed
Heikoop, J. M., Dunn, J. J., Risk, M. J., Schwarcz, H. P., Mcconnaughey, T. A., and Sandeman, I. M. 2000. Separation of kinetic and metabolic isotope effects in carbon-13 records preserved in reef coral skeletons. Geochimica et Cosmochimica Acta, 64:975987.Google Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern Planktonic Foraminifera. Springer-Verlag, New York, 363 p.Google Scholar
Higgins, P., and Macfadden, B. J. 2009. Seasonal and geographic climate variabilities during the Last Glacial Maximum in North America: Applying isotopic analysis and macrophysical climate models. Palaeogeography, Palaeoclimatology, Palaeoecology, 283:1527 10.1016/j.palaeo.2009.08.015.Google Scholar
Høie, H., Otterlei, E., and Folkvord, A. 2004. Temperature-dependent fractionation of stable oxygen isotopes in otoliths of juvenile cod (Gadus morhua L.). ICES Journal of Marine Science, 61:243251.Google Scholar
Hollis, C. J., Handley, L., Crouch, E. M., Morgans, H. E. G., Baker, J. A., Creech, J., Collins, K. S., Gibbs, S. J., Huber, M., Schouten, S., Zachos, J. C., and Pancost, R. D. 2009. Tropical sea temperatures in the high-latitude South Pacific during the Eocene. Geology, 37:99102.CrossRefGoogle Scholar
Huang, Y., Fairchild, I. J., Borsato, A., Frisia, S., Cassidy, N. J., Mcdermott, F., and Hawkesworth, C. J. 2001. Seasonal variations in Sr, Mg and P in modern speleothems (Grotta di Ernesto, Italy). Chemical Geology, 175:429448 10.1016/s0009-2541(00)00337-5.Google Scholar
Huber, M. 2008. A hotter greenhouse? Science, 321:353354.Google Scholar
Huber, M. 2012. TBA. In Ivany, L. C., and Huber, B. T. (eds.), Reconstructing Earth's Deep-Time Climate. Paleontological Society Papers, v. 18.Google Scholar
Huber, M., and Caballero, R. 2003. Eocene El Nino: Evidence for robust tropical dynamics in the “hothouse”. Science, 299:877881.Google Scholar
Huber, M., and Caballero, R. 2011. The early Eocene equable climate problem revisited. Climate of the Past, 7:603633 10.5194/cp-7-603-2011.Google Scholar
Hudson, J. H., Shinn, E. A., Halley, R. B., and Lidz, B. 1976. Sclerochronology: a tool for interpreting past environments. Geology, 4:361364.Google Scholar
Hughen, K. A., Schrag, D., and Jacobsen, S. B. 1999. El Niño during the last interglacial period recorded by a fossil coral from Indonesia. Geophysical Research Letters, 26:31293132.Google Scholar
Iacumin, P., Bianucci, G., and Longinelli, A. 1992. Oxygen and carbon isotopic composition of fish otoliths. Marine Biology, 113:537542.Google Scholar
Imbrie, J., and Kipp, N. G. 1971. A new micropaleontological method for quantitative paleoclimatology: Application to a Late Pleistocene Caribbean core, p. 71181 In Turekian, K. K. (ed.), The Late Cenozoic Glacial Ages. Yale University Press, New Haven CT.Google Scholar
Ingram, B. L., Conrad, M. E., and Ingle, J. C. 1996. Stable isotope and salinity systematics in estuarine waters and carbonates: San Francisco Bay. Geochimica et Cosmochimica Acta, 60:455467.Google Scholar
Ivany, L. C., Brey, T., Huber, M., Buick, D. P., and Schöne, B. R. 2011. El Niño in the Eocene greenhouse recorded by fossil bivalves and wood from Antarctica. Geophysical Research Letters, 38. 10.1029/2011g1048635.Google Scholar
Ivany, L. C., Lohmann, K. C., Blake, D. B., Hasiuk, F., Aronson, R. B., Glass, A., and Moody, R. 2008. Eocene climate record of a high southern latitude continental shelf: Seymour Island, Antarctica. Geological Society of America Bulletin, 120:659678 10.1130/B26269.1.Google Scholar
Ivany, L. C., Lohmann, K. C., and Patterson, W. P. 2003. Paleogene temperature history of the US Gulf Coastal Plain inferred from δ18O of fossil otoliths, p. 232251 In Prothero, D. R., Ivany, L. C., and Nesbitt, E. (eds.), From Greenhouse to Icehouse: the Marine Eocene–Oligocene Transition. Columbia University Press, New York.Google Scholar
Ivany, L. C., Patterson, W. P., and Lohmann, K. C. 2000. Cooler winters as a possible cause of mass extinctions at the Eocene–Oligocene boundary. Nature, 407:887890.Google Scholar
Ivany, L. C., Peters, S. E., Wilkinson, B. H., Lohmann, K. C., and Reimer, B. A. 2004a. Composition of the early Oligocene ocean from coral stable isotope and elemental chemistry. Geobiology, 2:97106.Google Scholar
Ivany, L. C., and Runnegar, B. 2010. Early Permian seasonality from bivalve δ18O and implications for the oxygen isotopic composition of seawater. Geology, 38:10271030 10.1130/g31330.1.Google Scholar
Ivany, L. C., Wilkinson, B. H., Lohmann, K. C., Johnson, E. R., Mcelroy, B. J., and Cohen, G. J. 2004b. Intra-annual isotopic variation in Venericardia bivalves: Implications for early Eocene temperature, seasonality, and salinity on the US Gulf Coast. Journal of Sedimentary Research, 74:719.Google Scholar
Izumida, H., Yoshimura, T., Suzuki, A., Nakashima, R., Ishimura, T., Yasuhara, M., Inamura, A., Shikazono, N., and Kawahata, H. 2011. Biological and water chemistry controls on Sr/Ca, Ba/Ca, Mg/Ca and δ18O profiles in freshwater pearl mussel Hyriopsis sp. Palaeogeography, Palaeoclimatology, Palaeoecology, 309:298308.Google Scholar
Jaffrés, J. B. D., Shields, G. A., and Wallmann, K. 2007. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Science Reviews, 83:83122.Google Scholar
Jahren, A. H., and Sternberg, L. S. L. 2008. Annual patterns within tree rings of the Arctic middle Eocene (ca. 45 Ma): Isotopic signatures of precipitation, relative humidity, and deciduousness. Geology, 36:99. 10.1130/g23876a.1.Google Scholar
Jones, D. S. 1983. Sclerochronology: reading the record of the molluscan shell. American Scientist, 71:384391.Google Scholar
Jones, D. S., Arthur, M. A., and Allard, D. J. 1989. Scleorchronological records of temperature and growth rate from shells of Mercenaria mercenaria from Narragansett Bay, Rhode Island. Marine Biology, 102:225234.Google Scholar
Jones, D. S., and Gould, S. J. 1999. Direct measurement of age in fossil Gryphaea: the solution to a classic problem in heterochrony. Paleobiology, 25:158187.Google Scholar
Jones, D. S., and Quitmyer, I. R. 1996. Marking time with bivalve shells: oxygen isotopes and season of annual increment formation. Palaios, 11:340346.Google Scholar
Jones, D. S., Quitmyer, I. R., and Andrus, C. F. T. 2005. Oxygen isotopic evidence for greater seasonality in Holocene shells of Donax variabilis from Florida. Palaeogeography, Palaeoclimatology, Palaeoecology, 228:96108 10.1016/j.palaeo.2005.03.046.Google Scholar
Jones, D. S., Williams, D. F., and Arthur, M. A. 1983. Growth history and ecology of the Atlantic surf clam, Spisula solidissima (Dillwyn), as revealed by stable isotopes and annual shell increments. Journal of Experimental Marine Biology and Ecology, 73:225242.Google Scholar
Jones, P. D., New, M., Parker, D. E., Martin, S., and Rigor, I. G. 1999. Curface air temperature and its changes over the past 150 years. Reviews of Geophysics, 37:173199.Google Scholar
Kalish, J. M. 1991a. 13C and 18O isotopic disequilibria in fish otoliths: metabolic and kinetic effects. Marine Ecology Progress Series, 75:191203.Google Scholar
Kalish, J. M. 1991b. Oxygen and carbon stable isotopes in the otoliths of wild and laboratory-reared Australian salmon (Arripis trutta). Marine Biology, 110:3747.Google Scholar
Karney, G. B., Butler, P. G., Scourse, J. D., Richardson, C. A., Lau, K. H., Czernuszka, J. T., and Grovenor, C. R. 2011. Identification of growth increments in the shell of the bivalve mollusc Arctica islandica using backscattered electron imaging. Journal of microscopy, 241:2936. 10.1111/j.1365-2818.2010.03403.x.Google Scholar
Keating-Bitonti, C. R., Ivany, L. C., Affek, H. P., Douglas, P., and Samson, S. D. 2011. Warm, not super-hot, temperatures in the early Eocene subtropics. Geology, 39:771774 10.1130/g32054.1.Google Scholar
Kennish, M. J. 1980. Shell microgrowth analysis: Mercenaria mercenaria as a type example for research in population dynamics, p. 255294 In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Kobashi, T., and Grossman, E. L. 2003. The oxygen isotopic record of seasonality in Conus shells and its application to understanding late middle Eocene (38 Ma) climate. Paleontological Research, 7:343355.Google Scholar
Kobashi, T., Grossman, E. L., Dockery, D. T., and Ivany, L. C. 2004. Water mass stability reconstructions from greenhouse (Eocene) to icehouse (Oligocene) for the northern Gulf Coast continental shelf (USA). Paleoceanography, 19:16. 10.1029/2003pa000934.Google Scholar
Kobashi, T., Grossman, E. L., Yancey, T. E., and Dockery, D. T. 2001. Reevaluation of conflicting Eocene tropical temperature estimates: Molluskan oxygen isotope evidence for warm low latitudes. Geology, 29:983986.Google Scholar
Koch, P. L. 2007. Isotopic study of the biology of modern and fossil vertebrates, p. 99154 In Michener, L. (ed.), Stable Isotopes in Ecology and Environmental Science. Blackwell Publishing, Boston.Google Scholar
Koch, P. L., Fisher, D. C., and Dettman, D. L. 1989. Oxygen isotope variations in the tusks of extinct proboscideans: a measure of season-of-death and seasonality. Geology, 17:515551.Google Scholar
Kohn, M. J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. Reviews in Mineralogy and Geochemistry, 48:455488.Google Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1998. Variability in oxygen isotope compositions of herbivore teeth: reflections of seasonality or developmental physiology? Chemical Geology, 152:97112.Google Scholar
Kopp, G., and Lean, J. L. 2011. A new, lower value of total solar irradiance: Evidence and climate significance. Geophysical Research Letters, 38. 10.1029/2010gl045777.Google Scholar
Kozdon, R., Kelly, D. C., Kita, N. T., Fournelle, J. H., and Valley, J. W. 2011. Planktonic foraminiferal oxygen isotope analysis by ion microprobe technique suggests warm tropical sea surface temperatures during the Early Paleogene. Paleoceanography, 26. 10.1029/2010PA002056.Google Scholar
Lécuyer, C., and Bucher, H. 2006. Stable isotope compositions of a late Jurassic ammonite shell: a record of seasonal surface water temperatures in the southern hemisphere? eEarth, 1:17.Google Scholar
Leder, J. J., Swart, P. K., Szmant, A. M., and Dodge, R. E. 1996. The origin of variations in the isotopic record of scleractinian corals; I. Oxygen. Geochimica et Cosmochimica Acta, 60:28572870.Google Scholar
Leider, A., Hinrichs, K., Mollenhauer, G., AND Versteegh, G. J. M. 2010. Core-top calibration of the lipid-based UK37′ and TEX86 temperature proxies on the southern Italian shelf (SW Adriatic Sea, Gulf of Taranto). Earth and Planetary Science Letters, 300:112124 doi:10.1016/j.epsl.2010.09.042.Google Scholar
Leng, M. J., Heaton, T. H. E., Lamb, H. F., and Naggs, F. 1998. Carbon and oxygen isotope variations within the shell of an African land snail (Limicolaria kambeul chudeaui Germain): a high-resolution record of climate seasonality? The Holocene, 8:407412.Google Scholar
Lenz, O. K., Wilde, V., Riegel, W., and Harms, F.-J. 2010. A 600 k.y. record of El Niño—Southern Oscillation (ENSO): Evidence for persisting teleconnections during the Middle Eocene greenhouse climate of Central Europe Geology, 38:627630 10.1130/G30889.1.Google Scholar
Limburg, K. E., Olson, C., Walther, Y., Dale, D., Slomp, C. P., and Hoie, H. 2011. Tracking Baltic hypoxia and cod migration over millennia with natural tags. Proceedings of the National Academy of Sciences of the United States of America, 108:E17782 10.1073/pnas.1100684108.Google Scholar
Liu, Q., Xie, S.-P., Li, L., and Maximenko, N. A. 2005. Ocean thermal advective effect on the annual range of sea surface temperature. Geophysical Research Letters, 32. 10.1029/2005g1024493.Google Scholar
Locarnini, R. A., Mishonov, A. V., Antonov, J. I., Boyer, T. P., Garcia, H. E., Baranova, O. K., Zweng, M. M., and Johnson, D. R. 2010. World Ocean Atlas 2009, Volume 1: Temperature. In Levitus, E. S. (ed.), NOAA Atlas NESDIS 68. U.S. Government Printing Office, Washington, D.C. Google Scholar
Lowenstein, T. K., and Hönisch, B. 2012. The use of Mg/Ca as a seawater temperature proxy. In Ivany, L. C., and Huber, B. T. (eds.), Reconstructing Earth's Deep-Time Climate: The State of the Art in 2012. Paleontological Society Papers, v. 18.Google Scholar
Lutz, R. A., and Rhoads, D. C. 1980. Growth patterns within the molluscan shell, p. 203254 In Rhoads, D. C., and Lutz, R. A. (eds.), Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Lyle, M., Gibbs, S., Moore, T. C., and Rea, D. K. 2007. Late Oligocene initiation of the Antarctic Circumpolar Current: Evidence from the South Pacific. Geology, 35:691. 10.1130/g23806a.1.Google Scholar
Martinson, D. G., Menke, W., and Stoffa, P. 1982. An inverse approach to signal correlation. Journal of Geophysical Research, 87:48074818.Google Scholar
Mas, R., Borremans, C., Ranner, H., Hermans, J., Gillikin, D. P., Elskens, M., Dehairs, F., Claeys, P., Keppens, E., and Dubois, P. 2010. Stable oxygen isotopic composition of starfish skeletons grown under controlled temperature and salinity conditions, p. 6773 In Andre, L., Dehairs, F., Mas, R., Planchon, F., and Versteegh, E. (eds.), Bivalve Biomineralization: Archival Potential and Proxy Incorporation. Universa Press, Wetteren, Belgium.Google Scholar
Mcconnaughey, T. 1989a. 13C and 18O isotopic disequilibrium in biological carbonates I. Patterns. Geochimica et Cosmochimica Acta, 53:151162.Google Scholar
Mcconnaughey, T. 1989b. 13C and 18O isotopic disequilibrium in biological carbonates II. In vitro simulation of kinetic isotope effects. Geochimica et Cosmochimica Acta, 53:163171.Google Scholar
Mcconnaughey, T., and Gillikin, D. P. 2008. Carbon isotopes in mollusk shell carbonates. Geo-Marine Letters, 28:287299.Google Scholar
Mcconnaughey, T. A., Burdett, J., Whelan, J. F., and Paull, C. K. 1997. Respiration and photosynthesis: effects on the carbon-13 content of biological carbonates. Geochimica et Cosmochimica Acta, 61:611622.Google Scholar
Mii, H.-S., and Grossman, E. L. 1994. Late Pennsylvanian seasonality reflected in the δ18O and elemental composition of a brachiopod shell. Geology, 22:661664.Google Scholar
Mii, H.-S., Shi, G. R., Cheng, C.-J., and Chen, Y.-Y. 2012. Permian Gondwanaland paleoenvironment inferred from carbon and oxygen isotope records of brachiopod fossils from Sydney Basin, southeast Australia. Chemical Geology, 291:87103 10.1016/j.chemgeo.2011.10.002.Google Scholar
Miklus, N. M. 2008. The high-latitude response of temperature seasonality to global Eocene cooling, . Syracuse University, Syracuse, NY.Google Scholar
Moriya, K., Nishi, H., Kawahata, H., Tanabe, K., and Takayanagi, Y. 2003. Demersal habitat of Late Cretaceous ammonoids: Evidence from oxygen isotopes for the Campanian (Late Cretaceous) northwestern Pacific thermal structure. Geology, 31:167170.Google Scholar
Morrill, C., and Koch, P. L. 2002. Elevation of alteration? Evaluation of isotopic constraints on paleoaltitudes surrounding the Eocene Green River Basin. Geology, 30:151154.Google Scholar
Nützel, A., Joachimski, M., and López Correa, M. 2010. Seasonal climatic fluctuations in the Late Triassic tropics - High-resolution oxygen isotope records from aragonitic bivalve shells (Cassian Formation, Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology, 285:194204.Google Scholar
Oleinik, A., Marincovich, L. J., Barinov, K. B., and Swart, P. K. 2008. Magnitude of Middle Miocene warming in North Pacific high latitudes: stable isotope evidence from Kaneharaia (Bivalvia, Dosiniinae). Bulletin of the Geological Survey of Japan, 59:339353.Google Scholar
Olson, I. C., Kozdon, R., Valley, J. W., and Gilbert, P. U. 2012. Mollusk shell nacre ultrastructure correlates with environmental temperature and pressure. Journal of the American Chemical Society, 134:7351–8 10.1021/ja210808s.Google Scholar
Orland, I. J., Bar-Matthews, M., Ayalon, A., Matthews, A., Kozdon, R., Ushikubo, T., and Valley, J. W. 2012. Seasonal resolution of Eastern Mediterranean climate change since 34 ka from a Soreq Cave speleothem. Geochimica et Cosmochimica Acta, 89:240255 10.1016/j.gca.2012.04.035.Google Scholar
Orland, I. J., Bar-Matthews, M., Kita, N. T., Ayalon, A., Matthews, A., and Valley, J. W. 2009. Climate deterioration in the Eastern Mediterranean as revealed by ion microprobe analysis of a speleothem that grew from 2.2 to 0.9 ka in Soreq Cave, Israel. Quaternary Research, 71:2735 10.1016/j.yqres.2008.08.005.Google Scholar
Pagani, M., Huber, M., Liu, Z., Bohaty, S. M., Henderiks, J., Sijp, W., Krishnan, S., and Deconto, R. M. 2011. The role of carbon dioxide during the onset of Antarctic glaciation. Science, 334:1261–4 10.1126/science.1203909.Google Scholar
Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S. 2005. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science, 309:600603.Google Scholar
Pannella, G., and Macclintock, C. 1968. Biological and environmental rhythms reflected in molluscan shell growth, p. 6481 In Macurda, D. B. J. (ed.), Paleobiological Aspects of Growth and Development.CrossRefGoogle Scholar
Passey, B. 2012. Reconstructing terrestrial environments using stable isotopes in fossil teeth and paleosol carbonates. In Ivany, L. C., and Huber, B. T. (eds.), Reconstructing Earth's Deep-Time Climate: The State of the Art in 2012. Paleontological Society Papers, v. 18.Google Scholar
Passey, B. H., and Cerling, T. E. 2002. Tooth enamel mineralization in ungulates: Implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta, 66:32253234.Google Scholar
Patterson, W. P. 1996. North American continental seasonality during the last millenium: high-resolution analysis of sagittae. Palaeogeography, Palaeoclimatology, Palaeoecology, 138:271303.Google Scholar
Patterson, W. P., Smith, G. R., and Lohmann, K. C. 1993. Continental paleothermometry and seasonality using the isotopic composition of aragonitic otoliths of freshwater fishes, p. 191202 In Swart, P., Lohmann, K. C., McKenzie, J., and Savin, S. (eds.), Climate Change in Continental Isotopic Records.Google Scholar
Pearson, P. N., Ditchfield, P. W., Singano, J., Harcourt-Brown, K. G., Nicholas, C. J., Olsson, R. K., Shackleton, N. J., and Hall, M. A. 2001. Warm tropical sea surface temperatures in the Late Cretaceous and Eocene epochs. Nature, 413:481487.Google Scholar
Pearson, P. N., Van Dongen, B. E., Nicholas, C. J., Pancost, R. D., Schouten, S., Singano, J. M., and Wade, B. S. 2007. Stable warm tropical climate through the Eocene Epoch. Geology, 34:211214.Google Scholar
Peters, S. E., and Loss, D. P. 2012. Storm and fair-weather wave base: A relevant distinction? Geology, 40:511514 10.1130/g32791.1.Google Scholar
Pisias, N. G., Roelofs, A., and Weber, M. 1997. Radiolarian-based transfer functions for estimating mean surface ocean temperatures and seasonal range. Paleoceanography, 12. 10.1029/97PA00582.Google Scholar
Poulsen, C. J., Barron, E. J., Peterson, W. H., and Wilson, P. A. 1999. A reinterpretation of mid-Cretaceous shallow marine temperatures through model-data comparison. Paleoceanography, 14:679697.Google Scholar
Prandle, D., and Lane, A. 1995. The annual temperature cycle in shelf seas. Continental Shelf Research, 15:681704.Google Scholar
Purton, L., and Brasier, M. 1997a. Winter and summer temperatures of the early Middle Eocene of France from Turritella δ18O profiles. Geology, 25:956.Google Scholar
Purton, L. M., Shields, G. A., Brasier, M. D., and Grime, G. W. 1999. Metabolism controls Sr/Ca ratios in fossil aragonitic mollusks. Geology, 27:10831086.Google Scholar
Purton, L. M. A., and Brasier, M. D. 1997b. Gastropod carbonate δ18O and d13C values record strong seasonal productivity and stratification shifts during the late Eocene in England. Geology, 25:871874.Google Scholar
Quinn, T. M., Crowley, T. J., Taylor, F., Henin, C., Joannot, P., and Join, Y. 1998. A multicentury stable isotope record from a New Caledonia coral: Interannual and decadal sea surface temperature variability in the southwestern Pacific since 1657 A.D. Paleoceanography, 13:412426.Google Scholar
Radtke, R., Showers, W., Moksness, E., and Lenz, P. 1996. Environmental information stored in otoliths: insights from stable isotopes. Marine Biology, 127:161170.Google Scholar
Rayner, N. A. 2003. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. Journal of Geophysical Research, 108. 10.1029/2002jd002670.Google Scholar
Rhoads, D. C., and Lutz, R. A., (eds.) 1980. Skeletal Growth of Aquatic Organisms. Plenum Press, New York.Google Scholar
Rinke, A., Maslowski, W., Dethloff, K., and Clement, J. 2006. Influence of sea ice on the atmosphere: A study with an Arctic atmospheric regional climate model. Journal of Geophysical Research, 111.10.1029/2005jd006957.Google Scholar
Ripepe, M., Roberts, L. T., and Fischer, A. G. 1991. ENSO and sunspot cycles in varved Eocene oil shales from image analysis. Journal of Sedimentary Petrology, 61:11551163.Google Scholar
Romanek, C. S., and Grossman, E. L. 1989. Stable isotope profiles of Tridacna maxima as environmental indicators. Palaios, 4:402413.Google Scholar
Roulier, L. M., and Quinn, T. M. 1995. Seasonal-to-decadal-scale climatic variability in Southwest Florida during the middle Pliocene; inferences from a corraline stable isotope record. Paleoceanography, 10:429443.Google Scholar
Rowell, K., Flessa, K. W., Dettman, D. L., and Roman, M. 2005. The importance of Colorado River flow to nursery habitats of the Gulf corvina (Cynoscion othonopterus). Canadian Journal of Fisheries and Aquatic Sciences, 62:28742885 10.1139/f05–193.Google Scholar
Royer, D. 2012. Climate reconstruction from leaf size and shape: New developments and challenges. In Ivany, L. C., and Huber, B. T. (eds.), Reconstructing Earth's Deep-Time Climate: The State of the Art in 2012. Paleontological Society Papers, v. 18.Google Scholar
Royer, T. C. 1989. Upper ocean temperature variability in the Northeast Pacific Ocean: Is it an indicator of global warming? Journal of Geophysical Research, 94:1817518183.Google Scholar
Royer, T. C. 1993. High-latitude oceanic variability associated with the 18.6-year nodal tide. Journal of Geophysical Research, 98:46394644.Google Scholar
Rozanski, K., Araguas-Araguas, L., and Gonfiantini, R. 1993. Isotopic patterns in modern global precipitation, p. 136 In Swart, P. K., Lohmann, K. C., McKenzie, J. A., and Savin, S. (eds.), Climate change in Continental Isotopic Records. American Geophysical Union, Washington D.C. Google Scholar
Sadekov, A., Eggins, S. M., De Deckker, P., and Kroon, D. 2008. Uncertainties in seawater thermometry deriving from intratest and intertest Mg/Ca variability in Globigerinoides ruber . Paleoceanography, 23:PA1215. 10.1029/2007pa001452.Google Scholar
Scher, H. D., and Martin, E. E. 2006. Timing and climatic consequences of the opening of Drake Passage. Science, 312:428430.Google Scholar
Schmidt, G. A., Bigg, G. R., and Rohling, E. J. 1999. Global Seawater Oxygen-18 Database, Version 1.19, http://data.giss.nasa.gov/o18data/.Google Scholar
Schöne, B. R., Dunca, E., Fiebig, J., and Pfeiffer, M. 2005a. Mutvei's solution: An ideal agent for resolving microgrowth structures of biogenic carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 228:149166 10.1016/j.palaeo.2005.03.054.Google Scholar
Schöne, B. R., and Fiebig, J. 2009. Seasonality in the North Sea during the Allerød and Late Medieval Climate Optimum using bivalve sclerochronology. International Journal of Earth Sciences, 98:8398 10.1007/s00531-008-0363-7.Google Scholar
Schöne, B. R., Fiebig, J., Pfeiffer, M., Gleß, R., Hickson, J., Johnson, A. L. A., Dreyer, W., and Oschmann, W. 2005b. Climate records from a bivalved Methuselah (Arctica islandica, Mollusca; Iceland). Palaeogeography, Palaeoclimatology, Palaeoecology, 228:130148 10.1016/j.palaeo.2005.03.049.Google Scholar
Schöne, B. R., Lega, J., Flessa, K. W., Goodwin, D. H., and Dettman, D. L. 2002. Reconstructing daily temperatures from growth rates of the intertidal bivalve mollusk Chione cortezi (northern Gulf of California, Mexico). Palaeogeography, Palaeoclimatology, Palaeoecology, 184:131146.Google Scholar
Schöne, B. R., Rodland, D. L., Fiebig, J., Oschmann, W., Goodwin, D. H., Flessa, K. W., and Dettman, D. L. 2009. Reliability of multitaxon, multiproxy reconstructions of environmental conditions from accretionary biogenic skeletons. Journal of Geology, 114:267285.Google Scholar
Schöne, B. R., Rodland, D. L., Wehrmann, A., Heidel, B., Oschmann, W., Zhang, Z., Fiebig, J., and Beck, L. 2006. Combined sclerochronologic and oxygen isotope analysis of gastropod shells (Gibbula cineraria, North Sea): life-history traits and utility as a high-resolution environmental archive for kelp forests. Marine Biology, 150:12371252. 10.1007/s00227-006-0435-9.Google Scholar
Schubert, B. A., Jahren, A. H., Eberle, J. J., Sternberg, L. S. L., and Eberth, D. A. 2012. A summertime rainy season in the Arctic forests of the Eocene. Geology. 10.1130/g32856.1.Google Scholar
Scourse, J. D., Kennedy, H., Scott, G. A., and Austin, W. E. N. 2004. Stable isotopic analyses of modern benthic foraminifera from seasonally stratified shelf seas: disequilibria and the ‘seasonal effect’. The Holocene, 14:747758.Google Scholar
Sessa, J. A., Ivany, L. C., Schlossnagle, T., Samson, S. D., and Schellenberg, S. A. 2012. The fidelity of oxygen and strontium isotope values from shallow shelf settings: Implications for temperature and age reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 342–343C:2739.Google Scholar
Seuss, B., Titschack, J., Seifert, S., Neubauer, J., and Nützel, A. 2012. Oxygen and stable carbon isotopes from a nautiloid from the middle Pennsylvanian (Late Carboniferous) impregnation Lagerstätte ‘Buckhorn Asphalt Quarry’ — Primary paleo-environmental signals versus diagenesis. Palaeogeography, Palaeoclimatology, Palaeoecology, 319–320:115. 10.1016/j.palaeo.2011.12.008.Google Scholar
Shackleton, N. J., and Kennett, J. P. 1975. Paleotemperature history of the Cenozoic and the initiation of Antarctic glaciation: oxygen and carbon isotope analyses in DSDP Sites 277, 279, and 281. Initial Reports of the DSDP, 74:743755.Google Scholar
Sharp, Z. 2007. Principles of Stable Isotope Geochemistry. Pearson Prentice-Hall, Upper Saddle River, NJ, 344 p.Google Scholar
Sharp, Z. D., and Cerling, T. E. 1998. Fossil isotope records of seasonal climate and ecology: Straight from the horse's mouth. Geology, 26:219222.Google Scholar
Shearman, R. K., and Lentz, S. 2010. Long-term sea surface temperature variability along the U.S. east coast. Journal of Physical Oceanography, 40:10041017.Google Scholar
Siegenthaler, U. 1979. Stable hydrogen and oxygen isotopes in the water cycle, p. 264273 In Jäger, E., and Hunziker, J. C. (eds.), Lectures in Isotope Geology. Springer-Verlag, Berlin.Google Scholar
Smith, G. R., and Patterson, W. P. 1994. Mio-Pliocene seasonality on the Snake River plain: comparison of faunal and oxygen isotopic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 107:291302.Google Scholar
Sosdian, S., Gentry, D. K., Lear, C. H., Grossman, E. L., Hicks, D., and Rosenthal, Y. 2006. Strontium to calcium ratios in the marine gastropod Conus ermineus: growth rate effects and temperature calibration. Geochemistry, Geophysics, Geosystems, 7:117, doi:10.1029/2005GC001233.Google Scholar
Souron, A., Balasse, M., and Boisserie, J.-R. 2012 in press. Intra-tooth isotopic profiles of canines from extant Hippopotamus amphibius and late Pliocene hippopotamids (Shungura Formation, Ethiopia): Insights into the seasonality of diet and climate. Palaeogeography, Palaeoclimatology, Palaeoecology. 10.1016/j.palaeo.2012.05.007.Google Scholar
Spero, H. J., and Williams, D. F. 1989. Opening the carbon isotope “vital effect” black box 1. Seasonal temperatures in the euphotic zone. Paleoceanography, 4:593601 10.1029/PA004i006p00593.Google Scholar
Spicer, R. A., Herman, A. B., and Kennedy, E. M. 2004. Foliar physiognomic record of climatic conditions during dormancy: Climate Leaf Analysis Multivariate Program (CLAMP) and the cold month mean temperature. Journal of Geology, 112:685702.Google Scholar
Spötl, C., and Mattey, D. 2006. Stable isotope microsampling of speleothems for palaeoenvironmental studies: A comparison of microdrill, micromill and laser ablation techniques. Chemical Geology, 235:4858 10.1016/j.chemgeo.2006.06.003.Google Scholar
Stephans, C. L. 2004. Assessing the reproducibility of coral-based climate records. Geophysical Research Letters, 31. 10.1029/2004g1020343.Google Scholar
Steuber, T. 1996. Stable isotope sclerochronology of rudist bivalves: growth rates and Late Cretaceous seasonality. Geology, 24:315318.Google Scholar
Steuber, T., Rauch, M., Masse, J. P., Graaf, J., and Malkoc, M. 2005. Low-latitude seasonality of Cretaceous temperatures in warm and cold episodes. Nature, 437:1341–4 10.1038/nature04096.Google Scholar
Storm-Suke, A., Dempson, J. B., Reist, , and Power, J. D. M. 2007. A field-derived oxygen isotope fractionation equation for Salvelinus species. Rapid Communications in Mass Spectrometry, 21:41094116.Google Scholar
Surge, D., Lohmann, K. C., and Dettman, D. L. 2001. Controls on isotopic chemistry of the American oyster, Crassostrea virginica: implications for growth patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 172:283296.Google Scholar
Surge, D., and Walker, K. J. 2006. Geochemical variation in microstructural shell layers of the southern quahog (Mercenaria campechiensis): Implications for reconstructing seasonality. Palaeogeography, Palaeoclimatology, Palaeoecology, 237:182190 10.1016/j.palaeo.2005.11.016.Google Scholar
Swart, P. K. 1983. Carbon and oxygen isotope fractionation in scleractinian corals: a review. Earth-Science Reviews, 19:5180.Google Scholar
Swart, P. K. 2002. Intra-annual variation in the stable oxygen and carbon and trace element composition of sclerosponges. Paleoceanography, 17. 10.1029/2000pa000622.Google Scholar
Swart, P. K., Dodge, R. E., and Hudson, J. H. 1996. A 240-year stable oxygen and carbon isotopic record in a coral from South Florida: implications for the prediction of precipitation in southern Florida. Palaios, 11:362375.Google Scholar
Thorrold, S. R., Jones, C. M., and Campana, S. E. 1997. Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulates). Limnology and Oceanography, 42:102111.Google Scholar
Tollefson, J. 2012. A break in the clouds. Nature, 485:164166.Google Scholar
Towe, K. M., and Hemleben, C. 1976. Diagenesis of magnesian calcite: evidence from miliolacean foraminifera. Geology, 4:337339.Google Scholar
Trenberth, K. E., and Otto-Bliesner, B. L. 2003. Toward integrated reconstruction of past climates. Science, 300:589591.Google Scholar
Tripati, A., and Zachos, J. C. 2002. Late Eocene tropical sea surface temperatures: A perspective from Panama. Paleoceanography, 17:14. 10.1029/2000PA000605.Google Scholar
Tripati, A., Zachos, J. C., Marincovich, L. J., and Bice, K. L. 2001. Late Paleocene Arctic coastal climate inferred from molluscan stable and radiogenic isotope ratios. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:101113.Google Scholar
Troost, T. A., Van Dam, J. A., Kooi, B. W., and Tuenter, E. 2009. Seasonality, climate cycles and body size evolution. Mathematical Modelling of Natural Phenomena, 4:135155 10.1051/mmnp/20094605.Google Scholar
Turekian, K. K., and Armstrong, R. A. 1961. Chemical and mineralogical composition of fossil molluscan shells from the Fox Hills Formation, South Dakota. Geological Society of America Bulletin, 72:18171828.Google Scholar
Urey, H. C., Epstein, S., and Mckinney, C. R. 1951. Measurement of paleotemperatures and temperatures of the Upper Cretaceous of England, Denmark, and the southeastern United States. Geological Society of America Bulletin, 62:399416.Google Scholar
Valentine, J. W. 1983. Seasonality: effects in marine benthic communities, p. 121156 In Tevesz, M. J. S., and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Communities. Plenum Press, New York.Google Scholar
Van Dam, J. A., and Reichart, G. J. 2009. Oxygen and carbon isotope signatures in late Neogene horse teeth from Spain and application as temperature and seasonality proxies. Palaeogeography, Palaeoclimatology, Palaeoecology, 274:6481.Google Scholar
Vanhove, D., Stassen, P., Speijer, R. P., and Steurbaut, E. 2011. Assessing paleotemperature and seasonality during the early Eocene climatic optimum (EECO) in the Belgian Basin by means of fish otolith stable O and C isotopes. Geologica Belgica, 14:143158.Google Scholar
Veizer, J., Ala, D., Azmy, K., Bruckschen, P., Buhl, D., Bruhn, F., Carden, G. A. F., Diener, A., Ebneth, S., Godderis, Y., Jasper, T., Korte, C., Pawellek, F., Podlaha, O. G., and Strauss, H. 1999. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chemical Geology, 161:5988.Google Scholar
Veizer, J., Bruckschen, P., Pawellek, F., Kiener, A., Podlaha, O. G., Carden, G. A. F., Jasper, T., Korte, C., Strauss, H., Azmy, K., and Ala, D. 1997. Oxygen isotope evolution of Phanerozoic seawater. Palaeogeography, Palaeoclimatology, Palaeoecology, 132:159172.Google Scholar
Veizer, J., Fritz, P., and Jones, B. G. 1986. Geochemistry of brachiopods: oxygen and carbon isotopic records of Phanerozoic oceans. Geochimica et Cosmochimica Acta, 50:16791696.Google Scholar
Verdegaal, S., Troelstra, S. R., Beets, C. J., and Vonhof, H. B. 2005. Stable isotopic records in unionid shells as a paleoenvironmental tool. Netherlands Journal of Geosciences, 84:403408.Google Scholar
Versteegh, E., Troelstra, S. R., Vonhof, H. B., and Kroon, D. 2009. Oxygen isotope composition of bivalve seasonal growth increments and ambient water in the rivers Rhine and Meuse. Palaios, 24:497504.Google Scholar
Wanamaker, A. D., Kreutz, K. J., Schöne, B. R., and Introne, D. S. 2011. Gulf of Maine shells reveal changes in seawater temperature seasonality during the Medieval Climate Anomaly and the Little Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology, 302:4351 10.1016/j.palaeo.2010.06.005.Google Scholar
Watanabe, T., Suzuki, A., Minobe, S., Kwashima, T., Kameo, K., Minoshima, K., Aguilar, Y. M., Wani, R., Kawahata, H., Sowa, K., Nagai, T., and Kase, T. 2011. Permanent El Niño during the Pliocene warm period not supported by coral evidence. Nature, 471:209211 10.1038/nature09777.Google Scholar
Weber, J. N., and Woodhead, P.J.M. 1972. Temperature dependence of oxygen-18 concentration in reef coral carbonates. Journal of Geophysical Research, 77:463473.Google Scholar
Wefer, G., and Berger, W. H. 1991. Isotope paleontology: growth and composition of extant calcareous species. Marine Geology, 100:207248.Google Scholar
Weidel, B. C., Ushikubo, T., Carpenter, S. R., Kita, N. T., Cole, J. J., Kitchell, J. F., Pace, M. L., and Valley, J. W. 2007. Diary of a bluegill (Lepomis macrochirus): daily δ13C and δ18O records in otoliths by ion microprobe. Canadian Journal of Fisheries and Aquatic Sciences, 64:16411645 10.1139/f07-157.Google Scholar
Weidman, C. R., Jones, G. A., and Lohmann, K. C. 1994. The long-lived mollusc Arctica islandica: A new paleoceanographic tool for the reconstruction of bottom temperatures for the continental shelves of the Northern Atlantic Ocean. Journal of Geophysical Research, 99:18,30518,314.Google Scholar
Weidman, C. R., and Millner, R. 2000. High-resolution stable isotope records from North Atlantic cod. Fisheries Research, 46:327342.Google Scholar
Welsh, K., Elliot, M., Tudhope, A., Ayling, B., and Chappell, J. 2011. Giant bivalves (Tridacna gigas) as recorders of ENSO variability. Earth and Planetary Science Letters, 307:266270 10.1016/j.epsl.2011.05.032.Google Scholar
Wilkinson, B. H., and Ivany, L. C. 2002. Paleoclimatic inference from stable isotopic compositions of accretionary biogenic hardparts— a quantitative approach to the evaluation of incomplete data. Palaeogeography, Palaeoclimatology, Palaeoecology, 185:95114.Google Scholar
Williams, D. F., Arthur, M. A., Jones, D. S., and Healy-Williams, N. 1982. Seasonality and mean annual sea surface temperatures from isotopic and sclerochronological records. Nature, 296:432434.Google Scholar
Wit, J. C., Reichart, G.-J., Jung, S. J. A., and Kroon, D. 2010. Approaches to unravel seasonality in sea surface temperatures using paired single-specimen foraminiferal δ18O and Mg/Ca analyses Paleoceanography, 25:15. 10.1029/2009PA001857.Google Scholar
Wolfe, J. A. 1993. A method of obtaining climatic parameters from leaf assemblages. USGS Bulletin, 2040:171.Google Scholar
Wurster, C. M., and Patterson, W. P. 2001. Late Holocene climate change for the eastern interior United States: evidence from high-resolution δ18O values of sagittal otliths. Palaeogeography, Palaeoclimatology, Palaeoecology, 170:81100.Google Scholar
Wurster, C. M., Patterson, W. P., and Cheatham, M. M. 1999. Advances in computer-based microsampling of biogenic carbonates. Computers and Geosciences, 25:11551162.Google Scholar
Xiong, Q., and Royer, T. C. 1993. Coastal temperature and salinity in the northern Gulf of Alaska. Journal of Geophysical Research, 89:80618066.Google Scholar
Yamamoto, K., Asami, R., and Iryu, Y. 2010a. Carbon and oxygen isotopic compositions of modern brachiopod shells from a warm-temperate shelf environment, Sagami Bay, central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 291:348359 10.1016/j.palaeo.2010.03.006.Google Scholar
Yamamoto, K., Asami, R., and Iryu, Y. 2010b. Within-shell variations in carbon and oxygen isotope compositions of two modern brachiopods from a subtropical shelf environment off Amami-o-shima, southwestern Japan. Geochemistry Geophysics Geosystems, 11. doi:10.1029/2010GC003190.Google Scholar
Zachos, J. C., Schouten, S., Bohaty, S. M., Quattlebaum, T., Sluijs, A., Brinkhuis, H., Gibbs, S. J., and Bralower, T. J. 2006. Extreme warming of mid-latitude coastal ocean during the Paleocene-Eocene Thermal Maximum: Inferences from TEX86 and isotope data. Geology, 34:737740.Google Scholar
Zachos, J. C., Stott, L. D., and Lohmann, K. C. 1994. Evolution of early Cenozoic marine temperatures. Paleoceanography, 9:353387.Google Scholar