Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T13:33:21.417Z Has data issue: false hasContentIssue false

Ordovician Life on Land and Early Paleozoic Global Change

Published online by Cambridge University Press:  21 July 2017

Gregory J. Retallack*
Affiliation:
Department of Geological Sciences, University of Oregon, Eugene, OR 97403
Get access

Extract

Many Paleontologists share the opinion of McGhee (1996), who wrote “Prior to the Devonian, there was no terrestrial ecosystem to speak of. Some primitive plants precariously establishing a beachhead in protected coastal areas was about it. The interiors of the continents of the planet Earth were as barren as the rocky landscapes of Mars.” Thus, it was with trepidation that I reported paleosols containing trace fossils of early land animals in the late Ordovician, Juniata Formation, of Pennsylvania (Retallack and Feakes, 1987; Retallack, 1992a, 1992b, 1993). My late colleague, Jane Gray, engendered considerable debate by reporting Ordovician and Early Silurian spores like those of liverworts (Gray and Boucot, 1977; Gray, 1985). This spore, trace fossil and paleosol evidence for life on land in the Ordovician has remained controversial (Buatois et al., 1998; Shear, 1998), but evidence for Ordovician life on land has continued to accumulate. Especially important was discovery of myriapod trackways from mid-Ordovician (Llandeilian-Caradocian) Borrowdale Volcanics of the Lake District, England (Johnson et al., 1994). Abundant arthropod burrows and tracks, and a single body fossil of an euthycarcinoid in the fluvial-eolian Tumblagooda Sandstone of Western Australia (White 1990; McNamara and Trewin, 1993; Trewin and McNamara, 1995) are now thought to be late Ordovician in age (Iaksy et al., 1998). An enigmatic assemblage of arthropods and plants from a mid-Ordovician paleokarst in Tennessee (Caster and Brooks, 1956) is now thought to have been lacustrine (Gray, 1988a). The fossil record of Ordovician land plants also has improved with the discovery of possible megafossil mosses (Snigirevskaya et al. 1992), and possible late Ordovician trilete spores (Nøhr-Hansen and Koppelhus, 1998; Richardson 1988; Strother, 1991; Strother et al., 1996). But the most abundant evidence for Ordovician life on land remains fossil soils, now exploited by increasingly thorough and sophisticated studies (Retallack, 1985, 1992a, 1992b, 1993; Feakes et al., 1989; Driese and Foreman 1991, 1992a, 1992b; Driese et al., 1992, 1997; Mora et al., 1991, 1996; Mora and Driese, 1993; Yapp and Poths, 1992, 1994, 1996; Yapp, 1993, 1996). Mounting evidence from fossils and paleosols now presents an increasingly detailed view of Ordovician ecosystems on land.

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahn, P. M. 1970. West African soils. vol. 1. Oxford University Press, London, 332 p.Google Scholar
Ahmad, M., Ryan, J., and Paeth, R. C. 1977. Soil development as a function of time in the Punjab River Plains of Pakistan. Soil Science Society of America Journal, 41:11621166.Google Scholar
Algeo, T. J., Berner, R. A., Maynard, R. A., and Scheckler, S. E. 1995. Late Devonian oceanic anoxic events and biotic crises: “rooted” in the evolution of vascular plants. GSA Today, 8(3):4566.Google Scholar
Almond, J. E. 1985. The Silurian-Devonian fossil record of the Myriapoda. Royal Society of London Philosophical Transactions, B309:227237.Google Scholar
Argast, S. 1992. Enigmatic tubes in Ordovician limestones of the Mohawk Valley, New York. Palaios, 7:532539.CrossRefGoogle Scholar
Bailey, P. T., and De Mendonca, T. R. 1990. The distribution of the millipede Ommatoiulus moreleti (Diplopoda: Julida, Julidae) in relation to other Ommatoiulus species in the southwestern Iberian peninsula. Journal of Zoology, 221:99111.Google Scholar
Bambach, R. 1993. Seafood through time; changes in biomass, energetics and productivity in the marine realm. Paleobiology, 19:372397.CrossRefGoogle Scholar
Bateman, R. M., Crane, P. R., DiMichele, W. A., Kenrick, P. R., Rowe, N. P., Speck, T., and Stein, W. E. 1998. Early evolution of land plants: phylogeny, physiology and ecology of the primary terrestrial radiation. Annual Reviews of Ecology and Systematics, 29:263292.Google Scholar
Berbee, M. I., and Taylor, J. W. 1993. Dating the evolutionary radiations of the true fungi. Canadian Journal of Botany, 71:11141127.Google Scholar
Berner, R. A. 1994. GEOCARBII: a revised model for atmospheric CO2 over Phanerozoic time. American Journal of Science, 294:5691.CrossRefGoogle Scholar
Berner, R. A. 1997. The rise of plants and their effect on weathering and atmospheric CO2 . Science, 276:543546.Google Scholar
Bertram, C. J., Elderfield, H., Aldridge, R. J., and Morris, S. C. 1992. 87Sr86Sr, 143Nd/143Nd and REEs in Silurian phosphatic fossils. Earth and Planetary Science Letters, 113:239249.CrossRefGoogle Scholar
Birkeland, P. W. 1990. Soil-geomorphic research - a selective overview, p. 207224. In Kneupfer, P.L.K., and McFadden, L. D. (eds.), Soils and Landscape Evolution. Geomorphology, 3.Google Scholar
Bloch, J., Hutcheon, J. E., and De Caritat, P. 1998. Tertiary volcanic rocks and potassium content of Gulf Coast shales - the smoking gun. Geology, 26:527530.2.3.CO;2>CrossRefGoogle Scholar
Bluth, G. J. S., and Kump, L. R. 1991. Phanerozoic paleogeology. American Journal of Science, 291:284308.Google Scholar
Bottjer, D. J., Schubert, J. K., and Droser, M. L. 1996. Comparative evolutionary paleoecology: assessing the changing ecology of the past, P. 113. In Hart, M. B. (ed.), Biotic recovery from mass extinction events. Geological Society of London Special Publication, 102.Google Scholar
Boucot, A. J., Dewey, J. F., Dineley, D. L., Fletcher, R., Fyson, W. K., Griffin, J. G., Hickox, C. F., McKerrow, W. S., and Ziegler, A. M. 1974. Geology of the Arisaig area, Antigonish County, Nova Scotia. Geological Society of America Special Paper, 139:191 p.Google Scholar
Bown, T. M. 1982. Ichnofossils and rhizoliths of the Jebel Quatrani Formation (Oligocene), Fayum Province, Egypt. Palaeogeography, Palaeoclimatology, Palaeoecology, 40:255309.Google Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high precision geochronology. GSA Today, 8(9):18.Google Scholar
Brenchley, P. J., Marshall, J. B., Carden, G. A. F., Robertson, D. B. R., Long, W. E. F., Meidia, T., Hints, L., and Anderson, T. F. 1994. Bathymetric and isotopic evidence for a short-lived Late Ordovician glaciation in a greenhouse period. Geology, 22:293298.2.3.CO;2>CrossRefGoogle Scholar
Brewer, R. 1976. Fabric and mineral analysis of soils. Krieger, New York, 482 pp.Google Scholar
Buatois, L. A., Mangano, M. G., Genise, J. F., and Taylor, T. N. 1998. The ichnologic record of the continental invertebrate invasion: evolutionary trends in environmental expansion, ecospace utilization and behavioral complexity. Palaios, 13:217240.CrossRefGoogle Scholar
Burke, W. H., Dennison, R. E., Hetherington, E. A., Koepnick, R. B., Nelson, H. F., and Otto, J. B. 1982. Variation in sea water 87Sr/86Sr throughout Phanerozoic time. Geology, 10, 516519.2.0.CO;2>CrossRefGoogle Scholar
Cai, C.-Y., Ouyang, S., and Wang, Y. 1995. Silurian floras. In Li, X.-Z. (ed.), Fossil Floras of China through the Geological Ages (English Edition), p. 327. Guandong Science and Technology Press, Guangzhou.Google Scholar
Cai, C.-Y., Ouyang, S., Fang, Z.-J., Rong, R.-Y., Geng, L.G., and Li, X.-X. 1996. An early Silurian vascular plant. Nature, 379:592.Google Scholar
Caster, K. E. and Brooks, H. K. 1956. New fossils from the Canadian-Chazyan (Ordovician) hiatus in Tennessee. Bulletins of American Paleontology, 36:157199.Google Scholar
Caudill, M. R., Driese, S. G., and Mora, C. I. 1997. Physical compaction of vertic palaeosols: implications for burial diagenesis and palaeoprecipitation estimates. Sedimentology, 44:673685.Google Scholar
Chlupácn, I. 1995. Lower Cambrian arthropods from the Paseky Shale (Barrandian area, Czech Republic). Journal of the Czech Geological Society, 40(4):936.Google Scholar
Cotter, E. 1978. The evolution of fluvial style, with special reference to the central Appalachian Paleozoic, p. 361383. In Miall, A. D. (ed.), Fluvial sedimentology. Canadian Society of Petroleum Geologists, Calgary.Google Scholar
Cotter, E. 1982. Tuscarora Formation of Pennsylvania. Eastern Section Society of Economic Paleontologists and Mineralogists Guidebook.Google Scholar
Courty, M. A., and Féderoff, N.N. 1985. Micromorphology of recent and buried soils in a semiarid region of northwestern India. Geoderma, 35:287332.Google Scholar
Crawford, C. S., Bercovitz, K., and Warburg, M. R. 1987. Regional environments, life-history patterns and habitat use of spirostreptic millipedes in arid regions. Linnaean Society of London Zoological Journal, 89:6368.Google Scholar
Delle Cave, L. and Simonetta, A. M. 1991. Early Palaeozoic Arthropoda and problems of arthropod phylogeny, p. 189244. In Simonetta, A. M. and Conway Morris, S. (eds.), The Early evolution of Metazoa and significance of problematic taxa. Cambridge University Press, Cambridge.Google Scholar
Dennison, J. M. 1976. Appalachian Queenston delta relative to eustatic sea-level drop accompanying Late Ordovician glaciation centered in Africa, p. 107120. In Bassett, M.G. (ed.), The Ordovician System: University of Wales Press, Cardiff.Google Scholar
Diecchio, R. J. 1995. Sea-level changes and correlations of Ordovician-Silurian boundary sections in Appalachian Basin and Anticosti Island based on cumulative aggradation plots, p. 337341. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician Odyssey. Pacific Section, Society for Sedimentary Geology, Los Angeles.Google Scholar
Dorsch, T. R., Bambach, R. K., and Driese, S. G. 1994. Basin-rebound origin for the “Tuscarora unconformity” in southwestern Virgina and its bearing on the nature of the Taconic Orogeny. American Journal of Science, 294:237255.CrossRefGoogle Scholar
Driese, S. G., and Foreman, J.L. 1991. Traces and related chemical changes in a Late Ordovician paleosol, Glossifungites ichnofacies, southern Appalachians, U.S.A. Ichnos, 1:207219.Google Scholar
Driese, S. G., and Foreman, J.L. 1992a. Paleopedology and paleoclimatic implications of Late Ordovician vertic paleosols southern Appalachians. Journal of Sedimentary Petrology, 62:7183.Google Scholar
Driese, S. G., and Foreman, J.L. 1992b. Paleopedology and paleoclimatic implications of Late Ordovician Beans Gap claystone paleosol, Juniata Formation at Beans Gap, TN, p.3552. In Driese, S. G., Mora, C. I., and Walker, K. R. (eds.), Paleosols, paleoweathering surfaces and sequence boundaries. University of Tennessee, Department of Geological Sciences, Studies in Geology, v. 21.Google Scholar
Driese, S. G., and Mora, C. I. 1993. Physico-chemical environment of pedogenic carbonate formation, Devonian vertic palaeosols, central Appalachians, U.S.A. Sedimentology, 40:199216.Google Scholar
Driese, S. G., Mora., C. I., Cotter, E., and Foreman, J. L. 1992. Paleopedology and stable isotope chemistry of Late Silurian vertic paleosols, Bloomsburg Formation, central Pennsylvania. Journal of Sedimentary Petrology, 62:825841.Google Scholar
Driese, S. G., Mora., C. I., and Elick, J. M. 1997. Morphology and taphonomy of root and stump casts of the earliest trees (Middle to Late Devonian), Pennsylvania and New York, U.S.A. Palaios, 12:524537.CrossRefGoogle Scholar
Edwards, D., and Selden, P. A. 1993. The development of early terrestrial ecosystems. Botanical Journal of Scotland, 46:337366.CrossRefGoogle Scholar
Edwards, D., Duckett, J. G., and Richardson, J. B. 1995. Hepatic characters in the earliest land plants. Nature, 74:635636.Google Scholar
Eernisse, D. J. 1998. Arthropod and annelid relationships re-examined, p. 4356. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod relationships. Systematics Association Special Volume 55.Google Scholar
Epstein, A. G., Epstein, J. B., and Harris, C. D. 1977. Conodont color alteration — an index to organic metamorphism. U.S. Geological Survey Professional Paper, 995:27 pp.Google Scholar
Feakes, C. R., and Retallack, G. J. 1988. Recognition and characterization of fossil soils developed on alluvium: a Late Ordovician example, p. 3548. In Reinhardt, J., and Sigleo, W. R. (eds.), Paleosols and Weathering through Geological Time: Principles and Applications. Geological Society of America Special Paper 216.Google Scholar
Feakes, C. R., Holland, H. D., and Zbinden, E. A. 1989. Ordovician paleosols at Arisaig, Nova Scotia, and the evolution of the atmosphere, P. 207232. In Bronger, A., and Catt, J. A. (eds.), Paleopedology: Nature and Application of Paleosols. Catena Supplement, 16:207–232.Google Scholar
Feist, M., and Feist, R. 1997. Oldest record of a bisexual plant. Nature, 385:401.CrossRefGoogle Scholar
Finney, S. C., Berry, W. B. N., Cooper, J. D., Ripperdan, R. L., Jacobson, S. R., Souliane, A., Achab, A., and Noble, P. 1999. Late Ordovician mass extinction: a new perspective from stratigraphic sections in central Nevada. Geology, 27:215218.Google Scholar
Fischer, W. A. 1978. The habitat of the early vertebrates: trace and body fossil evidence from the Harding Formation (Middle Ordovician), Colorado. Mountain Geologist, 15:126.Google Scholar
Frey, R. G., Pemberton, S. G., and Fagerstrom, J. A. 1984. Morphological, ethological and environmental significance of the ichnogenera Scoyenia and Ancorichnus . Journal of Paleontology, 58:511528.Google Scholar
Friedrich, M. and Tautz, D. 1995. Ribosomal DNA phylogeny of the major extant arthropod groups and the evolution of myriapods. Nature, 376:165167.Google Scholar
Gibbs, M. T., Barron, E. J., and Kump, L. R. 1997. An atmospheric CO2 threshold for glaciation in the Late Ordovician. Geology, 25:447450.Google Scholar
Gile, L. H., Peterson, F. F., and Grossman, R. B. 1966. Morphological and genetic sequences of carbonate accumulation in the desert soils. Soil Science, 101:347360.Google Scholar
Gray, J. 1985. The microfossil record of early land plants: advances in understanding of terrestrialization, 1970–1984. Royal Society of London Philosophical Transactions, B309:167195.Google Scholar
Gray, J. 1988a. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology, 62:1214.Google Scholar
Gray, J. 1988b. Land plant spores and the Ordovician-Silurian boundary. Bulletin British Museum of Natural History (Geology), 43:351358.Google Scholar
Gray, J. 1991. Tetrahedraletes, Nodospora and the “cross tetrad”: an accretion of myth, p. 4987. In Blackmore, S., and Barnes, S. H. (eds.), Pollen and Spores: Systematics Association Special Volume 44.Google Scholar
Gray, J. 1993. Major Paleozoic land plant evolutionary bioevents. Palaeogeography, Palaeclimatology, Palaeoecology, 104:153169.Google Scholar
Gray, J. and Boucot, J. 1970. Early vascular plants: proof and conjecture. Lethaia, 10:145174.Google Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge, 263 p.Google Scholar
Holland, H. D. 1984. The Chemical Evolution of the Atmosphere and Oceans. Princeton University Press, Princeton, 582 p.Google Scholar
Iasky, P. P., Mory, A. J., Ghori, K. A. R., and Schevchenko, S. I. 1998. Structure and petroleum potential of the southern Merlinleigh Sub-Basin, Carnarvon Basin, Western Australia. Report of the Geological Survey of Western Australia, 61:1631.Google Scholar
Jablonski, D., Sepkoski, J. J., Bottjer, D. J., and Sheehan, P. M. 1983. Onshore-offshore patterns in the evolution of Phanerozoic shelf communities. Science, 222:11231125.Google Scholar
Jeram, A. J., Selden, P. A., and Edwards, D. 1990. Land animals in the Silurian: arachnids and myriapods from Shropshire, England. Science, 250:658661.Google Scholar
Johnson, E. W., Briggs, D. E. G., Suthren, R. J., Wright, J. L., and Tunnicliff, J. P. 1994. Non-marine arthropod traces from the subaerial Ordovician Borrowdale Volcanic Group, English Lake district. Geological Magazine, 131:395406.CrossRefGoogle Scholar
Jones, B., and Pemberton, S. G. 1987. The role of fungi in the diagenetic alteration of spar calcite. Canadian Journal of Earth Sciences, 24:903914.Google Scholar
Jones, M. J., and Wild, A. 1975. Soils of the West African Savannas. Technical Communication Commonwealth Bureau of Soils, Harpenden, 55:246 p.Google Scholar
Keller, C. K., and Wood, B. D. 1993. Possibility of chemical weathering before the advent of vascular land plants. Nature, 364:223225.CrossRefGoogle Scholar
Kenrick, P., and Crane, P. R. 1997. Early Evolution of Land Plants. Smithsonian Institution Press, Washington, 592 p.Google Scholar
Konopka, A. S., Herendeen, P. S., Merrill, G. L. S., and Crane, P. B. 1997. Sporophytes and gametophytes of Polytrichaceae from the Campanian (Late Cretaceous) of Georgia, U.S.A. International Journal of Plant Science, 158:489499.Google Scholar
Konopka, A. S., Herendeen, P. S., and Crane, P. B. 1998. Sporophytes and gametophytes of Dicranaceae from the Santonian (Late Cretaceous) of Georgia, U.S.A. American Journal of Botany, 85:714723.Google Scholar
Kump, L. R., Gibbs, M. T., Arthur, M. A., Patzkowsky, M. E., and Sheehan, P. M. 1995. Hirnantian glaciation and the carbon cycle, p. 299301. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician odyssey. Pacific Section, Society for Sedimentary Geology, Los Angeles.Google Scholar
Martin, R. E. 1996. Secular increase in nutrient levels through the Phanerozoic: implications for productivity, biomass and diversity of the marine biosphere. Palaios, 11:209219.Google Scholar
McFadden, L.D., Amundson, R., and Chadwick, O. A. 1991. Numerical modelling, chemical and isotopic studies of carbonate accumulation in arid regions, p. 1731. In Nettelton, W. D. (ed.), Occurrence, characteristics and genesis of carbonate, gypsum and silica accumulations in soils. Soil Science Society of America Special Publication 26.Google Scholar
McGhee, G. R. 1996. The Late Devonian mass extinction. Columbia University Press, New York, 303 p.Google Scholar
McNamara, K. T. and Trewin, N. H. 1993. An euthycarcinoid from the Silurian of Western Australia. Palaeontology, 36:319335.Google Scholar
Mikulas, R. 1995. Trace fossils from the Paseky Shale (Early Cambrian, Czech Republic). Journal of the Czech Geological Society, 40(4):3744.Google Scholar
Mikulic, D. G., Briggs, D. E. G., and Kluessendorf, J. 1985. Anew exceptionally preserved biota from the Lower Silurian of Wisconsin, U.S.A. Royal Society of London Philosophical Transactions, B311:7585.Google Scholar
Montañez, I.P., Osleger, D. A., Banner, J. L., Mack, L. E., and Musgrave, M. L. 2000. Evolution of the Sr and C isotopic composition of Cambrian oceans. GSA Today, 10(5):17.Google Scholar
Mora, C. I., and Driese, S. G. 1993. A steep, mid- to late Paleozoic decline in atmospheric CO2: evidence from the soil carbonate CO2 paleobarometer. Chemical Geology, 107:217219.Google Scholar
Mora, C. I., Driese., S. G. and Seagar, P. G. 1991. Carbon dioxide in the Paleozoic atmosphere: evidence from carbon isotope compositions of pedogenic carbonate. Geology, 19:10171020.Google Scholar
Mora, C. I., Driese., S. G., and Colarusso, L. A. 1996. Middle to late Paleozoic atmospheric CO2 from soil carbonate and organic matter. Science, 271:11051107.Google Scholar
Mora, C. I., Sheldon, B. T., Elliott, W. C., and Driese, S. G. 1998. An oxygen isotope study of illite and calcite in three Appalachian Paleozoic vertic paleosols. Journal of Sedimentary Research, 68:456464.Google Scholar
Morris, S. C., Pickerill, R. K., and Harland, T. L. 1982. A possible annelid from the Trenton Limestone (Ordovician) of Quebec, with a review of fossil oligochaetes and other annulate worms. Canadian Journal of Earth Sciences, 19:21502157.Google Scholar
Niklas, K. J. 1982. Chemical diversification and evolution of plants as inferred from paleobiochemical studies, p. 2991. In Nitecki, M. H. (ed.), Biochemical aspects of evolutionary biology. University of Chicago Press, Chicago.Google Scholar
Nøhr-Hansen, H. and Koppelhus, E. B. 1988. Ordovician spores with trilete rays from Washington Land, North Greenland. Review of Palaeobotany and Palynology, 56:305311.Google Scholar
Overbeck, V. R., Marshall, J. R., and Aggarwal, H. 1993. Impacts, tillites and the breakup of Gondwanaland. Journal of Geology, 101:119.Google Scholar
Pratt, L. M., Phillips, T. L., and Dennison, J. M. 1978. Evidence of non-vascular land plants from the early Silurian (Llandoverian) of Virginia, U.S.A. Review of Palaeobotany and Palynology, 25:121149.Google Scholar
Qing, H., and Veizer, J. 1994. Oxygen and carbon isotopic composition of Ordovician brachiopods: implications for coeval sea water. Geochemica et Cosmochimica Acta, 58:44294442.Google Scholar
Qiu, Yin-Long, Cho, Yang-Rae, Cox, J. C., and Palmer, J. D. 1998. The gain of three mitochondrial introns identifies liverworts as the earliest land plants. Science, 294:671674.Google Scholar
Quade, J., and Cerling, T. E. 1995. Expansion of C4 grasses in the late Miocene of northern Pakistan. Palaeogeography, Palaeoclimatology, Palaeoecology, 115:91116.Google Scholar
Ramsköld, L., and Chen, J.-Y. 1998. Cambrian lobopodians: morphology and phylogeny, p. 107150. In Edgecombe, G. D. (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Retallack, G. J. 1976. Triassic palaeosols in the Upper Narrabeen Group of New South Wales. Part II. Features of the paleosols. Geological Society of Australia Journal, 23:383399.Google Scholar
Retallack, G. J. 1985. Fossil soils as grounds for interpreting the advent of large plants and animals on land. Royal Society of London Philosophical Transactions, B309:105142.Google Scholar
Retallack, G. J. 1990. Soils of the past: an introduction to paleopedology. Unwin-Hyman, London, 520 pp.Google Scholar
Retallack, G. J. 1991a. Miocene paleosols and ape habitats of Pakistan and Kenya. Oxford University Press, New York, 346 p.Google Scholar
Retallack, G. J. 1991b. Untangling the effects of burial alteration and ancient soil formation. Annual Reviews of Earth and Planetary Sciences, 19:183206.Google Scholar
Retallack, G. J. 1992a. Paleozoic paleosols, p. 453464. In Martini, I. P., and Chesworth, W. (eds.), Weathering, soils and paleosols. Elsevier, Amsterdam.Google Scholar
Retallack, G. J. 1992b. What to call early plant formations on land. Palaios, 7:508520.Google Scholar
Retallack, G. J. 1993. Late Ordovician paleosols of the Juniata Formation near Potters Mills, Pennsylvania, p. 3349. In Driese, S. G. (ed.), Paleosols, paleoclimate and paleoatmospheric CO2: Paleozoic paleosols of Pennsylvania. University of Tennessee, Department of Geological Sciences, Studies in Geology 22.Google Scholar
Retallack, G. J. 1994a. Were the Ediacaran fossils lichens? Paleobiology, 20:523544.Google Scholar
Retallack, G. J. 1994b. The environmental factor approach to the interpretation of paleosols, p. 3164. In Amundson, R., Harden, J., and Singer, M. (eds.), Factors in soil formation - a fiftieth anniversary perspective. Soil Science Society of America, Madison, Special Publication 33.Google Scholar
Retallack, G. J. 1996a. Acid trauma at the Cretaceous—Tertiary boundary in eastern Montana. GSA Today, 6(5): 17.Google Scholar
Retallack, G. J. 1996b. Paleosols: record and engine of past global change. Geotimes, 41(6):2528.Google Scholar
Retallack, G. J. 1997. Early forest soils and their role in Devonian global change: Science, 276:583585.Google Scholar
Retallack, G. J. 2000a. Scoyenia burrows from Ordovician palaeosols of the Juniata Formation in Pennsylvania. Palaeontology (in press).Google Scholar
Retallack, G. J. 2000b. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator: comment. Geology, 28:572573.Google Scholar
Retallack, G. J., and Feakes, C. R. 1987. Trace fossil evidence for Late Ordovician animals on land. Science, 235:6163.Google Scholar
Retallack, G. J., and Mindszenty, A. 1994. Well preserved Late Precambrian paleosols from northwest Scotland. Journal of Sedimentary Research, A64:264281.Google Scholar
Richardson, J. B. 1988. Late Ordovician and Early Silurian cryptospores and miospores from northeast Libya, P. 89109. In El Arnauti, O., Owens, B., and Thusu, B. (eds.), Subsurface palynostratigraphy of northeast Libya. Garyounis University Publications, Benghazi, Libya.Google Scholar
Ripperdan, R. L., Magaritz, M., Nicoll, R. S., and Shergold, J. H. 1992. Simultaneous changes in carbon isotopes, sea level and conodont biozones within the Cambrian-Ordovician boundary interval at Black Mountain, Australia. Geology, 20:10391042.Google Scholar
Robinson, J. M. 1990. Lignin, land plants and fungi: biological evolution affecting Phanerozoic oxygen balance. Geology, 18:607610.Google Scholar
Robison, R. A. 1990. Earliest known uniramous arthropod. Nature, 343:163164.Google Scholar
Royer, D. L. 1999. Depth to pedogenic carbonate horizon as a paleoprecipitation indicator. Geology, 27:11231126.Google Scholar
Ruhe, R. V. 1969. Quaternary Landscapes in Iowa. University of Iowa Press, Ames, 255 pp.Google Scholar
Sarwar, G., and Friedman, G. M. 1995. Post-Devonian sediment cover over New York state. Springer, New York, 113 pp.Google Scholar
Schopf, J. M., Mencher, E., Boucot, A. B., and Andrews, H. N. 1966. Erect plants in the early Silurian of Maine. U.S. Geological Survey Professional Publication, 550D:698–75.Google Scholar
Schwartzman, D. W., and Volk, T. 1989. Biotic enhancement of weathering and the habitability of Earth. Nature, 340:457460.CrossRefGoogle Scholar
Sepkoski, J. J. 1995. The Ordovician radiations: diversification and extinction shown by global genus-level taxonomic data, p. 393396. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician Odyssey. Pacific Section, Society for Sedimentary Geology, Los Angeles.Google Scholar
Shear, W. A. 1998. The fossil record and evolution of the Myriapoda. In Fortey, R. A., and Thomas, R. H. (eds.), Arthropod relationships. Systematics Association Special Volume, 55:211219.Google Scholar
Shear, W. A., and Kukalova-Peck, J. 1990. The ecology of Paleozoic terrestrial arthropods. Canadian Journal of Zoology, 68:18071834.Google Scholar
Shear, W. A., Gensel, P. G., and Jeram, A. J. 1996. Fossils of large terrestrial arthropods from the Lower Devonian of Canada. Nature, 384:555557.Google Scholar
Sheehan, P. M., Coorough, P. J., and Fastovsky, D. E. 1996. Biotic selectivity during the K/T and Late Ordovician extinction events, p. 477489. In Ryder, G., Fastovsky, D. E., and Gartner, S. (eds.), The Cretaceous-Tertiary event and other catastrophes in Earth history. Geological Society of America Special Paper 307.Google Scholar
Sherwood-Pike, M. A., and Gray, J. 1985. Silurian fungal remains: probable records of the class Ascomycetes. Lethaia, 18:120.Google Scholar
Simon, L., Bousquet, J., Lévesque, J. C., and Lalonde, M. 1993. Origin and diversification of endomycorrhizal fungi and coincidence with vascular land plants. Nature, 363:6769.Google Scholar
Skilliter, D. H., Strother, P. K., Baldwin, C. T., and McNulty, T. 1998. Paleontological and sedimentological study of the Middle Cambrian Bright Angel Shale: what's for lunch. Geological Society of America Abstracts, 30(7):385.Google Scholar
Snigirevskaya, N. S., Popov, L. E., and Zdebsak, D. 1992. Novie nakhodki ostatkov drevnishchikh vishchikh rastenii v srednem ordovike yuzhnogo kazakhstana (New findings of the oldest higher plant remains in the Middle Ordovician of south Kazakhstan). Botanicheskii Zhurnal, 77(4): 18.Google Scholar
Soot-Ryen, H. 1960. The Middle Ordovician of the Oslo Region, Norway. 12. Notostraca and Conchostraca. Norsk Geologisk Tidsskrift, 40:123141.Google Scholar
Stebbins, G. L., and Hill, G. J. C. 1980. Did multicellular plants invade the land? American Midland Naturalist, 15:342353.Google Scholar
Stevenson, F. J. 1986. Cycles of soil: carbon, nitrogen, phosphorus, sulfur and micronutrients. Wiley, New York, 380 pp.Google Scholar
Strother, P. K. 1988. New species of Nematothallus from the Silurian Bloomsburg Formation of Pennsylvania. Journal of Paleontology, 62:967982.Google Scholar
Strother, P. K. 1991. A classification schema for the cryptospores. Palynology, 15:219236.Google Scholar
Strother, P. K., and Lenk, C. 1983. Eohostimella is not a plant. American Journal of Botany Abstracts, 70(5–2):80.Google Scholar
Strother, P. K., and Wood, G. 2000. Evidence of terrestrial plants by Middle Cambrian time. Geological Society of America Abstracts, 32(1):4.Google Scholar
Strother, P. K., Al-Hatri, S., and Traverse, A. 1996. New evidence for land plants from the lower Middle Ordovician of Saudi Arabia. Geology, 24:5558.Google Scholar
Tappan, H., and Loeblich, A. K. 1973. Evolution of oceanic plankton. Earth Science Reviews, 9:207240.Google Scholar
Taylor, T. N., Remy, W., and Hass, H. 1992. Parasitism in a 400-million-year-old green alga. Nature, 357:493494.Google Scholar
Taylor, T. N., Hass, H. and Kerr, H. 1997. A cyanolichen from the Lower Devonian Rhynie Chert. American Journal of Botany, 24:19922004.Google Scholar
Taylor, W. A. 1995a. Spores in earliest land plants. Nature, 373:391392.Google Scholar
Taylor, W. A. 1995b. Ultrastructure of Tetrahedraletes medinensis (Strother and Traverse) Wellman and Richardson, from the Upper Ordovician of southern Ohio. Review of Palaeobotany and Palynology, 85:183187.Google Scholar
Taylor, W. A. 1996. Ultrastructure of lower Paleozoic dyads from southern Ohio. Review of Palaeobotany and Palynology, 92:269279.Google Scholar
Thompson, A. M. 1970a. Tidal-flat deposition and early dolomitization in upper Ordovician rocks of southern Appalachian Valley and Ridge. Journal of Sedimentary Petrology, 40:12711286.Google Scholar
Thompson, A. M. 1970b. Geochemistry of color genesis in a red bed sequence, Juniata and Bald Eagle Formations, Pennsylvania. Journal of Sedimentary Petrology, 40:599615.Google Scholar
Trewin, N. H., and McNamara, K. J. 1995. Arthropods invade the land: trace fossils and palaeoenvironments of the Tumblagooda Sandstone (?late Silurian) of Kalbarri, Western Australia. Royal Society of Edinburgh Earth Sciences Transactions, 85:117210.Google Scholar
Wadleigh, M. A., and Veizer, J. 1982. 18O/16O and 13C/12C in lower Paleozoic articulate brachiopods: implications for the isotopic composition of sea water. Geochimica Cosmochimica Acta, 56:431443.Google Scholar
Wang, K., Orth, C. J., Attrep, M., Chatterton, B. D. E., and Wang, W.-F. 1993. The great latest Ordovician extinction on the South China Plate: chronostratigraphic studies of the Ordovician-Silurian boundary interval on the Yangtze Platform. Palaeogeography, Palaeoclimatology, Palaeoecology, 104:6179.Google Scholar
Wheeler, W. 1998. Sampling, groundplans, total evidence and the systematics of arthropods, p. 8796. In Fortey, R. A., and Thomas, R. H. (eds.), Arthropod relationships. Systematics Association Special Volume, 55.Google Scholar
White, M. E. 1990. The nature of hidden worlds. Reed, Balgowlah, Australia, 256 pp.Google Scholar
Wieder, M., and Yaalon, D. 1982. Micromorphological fabrics and developmental stages of carbonate nodular forms related to soil characteristics. Geoderma, 28:203220.Google Scholar
Wills, M. A., Briggs, D. E. G., Fortey, R. A., Wilkinson, M., and Sneath, P. H. A. 1998. An arthropod phylogeny based on fossil and recent taxa, p. 33105. In Edgecombe, G. D. (ed.), Arthropod fossils and phylogeny. Columbia University Press, New York.Google Scholar
Yapp, C. J. 1993. Paleoenvironment and the oxygen isotope geochemistry of ironstone in the Upper Ordovician Neda Formation, Wisconsin, USA. Geochimica et Cosmochimica Acta, 57:23192327.Google Scholar
Yapp, C. J. 1996. The abundance of Fe (CO3)OH in goethite: a possible constraint on minimum oxygen partial pressure in the Phanerozoic. Geochimica Cosmochimica Acta, 60:43994402.Google Scholar
Yapp, C. J., and Poths, H. 1992. Ancient atmospheric CO2 pressures inferred from natural goethites. Nature, 355:342344.Google Scholar
Yapp, C. J., and Poths, H. 1994. Productivity of pre-vascular continental biota inferred from Fe(CO3)OH content of goethite. Nature, 368:4951.Google Scholar
Yapp, C. J., and Poths, H. 1996. Carbon isotopes in continental environments and variation in ancient atmospheric CO2 pressures. Earth and Planetary Science Letters, 137:7182.Google Scholar
Zeigler, A. M., Scotese, C. R., McKerrow, W. S., Johnson, M. E., and Bambach, R. 1979. Paleozoic paleogeography. Annual Reviews of Earth and Planetary Sciences, 7:473502.Google Scholar