Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T06:54:07.971Z Has data issue: false hasContentIssue false

Opportunities and Challenges of a Highly Resolved Geological Timescale

Published online by Cambridge University Press:  21 July 2017

Douglas H. Erwin*
Affiliation:
Department of Paleobiology, MRC-121 Smithsonian Institution PO Box 37012, Washington, D. C. 20013-7012, [email protected] Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501
Get access

Abstract

The advent of greatly improved radiometric dating techniques with lower uncertainties, the development of new dating and correlation techniques, including vastly expanded quantitative biostratigraphic methods, and the possibility of reliable extension of orbital cyclostratigraphy into the Paleozoic all promise a great improvement in the ability of geologists to construct high-resolution temporal frameworks far deeper into the past. Such techniques have already allowed the generation of a high-resolution temporal framework for the Ediacaran-Cambrian radiation of metazoa, helped greatly narrow the duration of the great Permo-Triassic mass extinction and eliminated several hypothesized causes, and narrowed the duration of the oceanic anoxic event at the Cenomanian-Turonian (Late Cretaceous boundary). Temporal resolution of 100 kyr (0.02%) or even better into the early Paleozoic now seems likely, opening a host of new questions for reliable investigation. Further exploiting the possibilities of these techniques will require paleontologists to improve methods to integrate these disparate techniques, improve our understanding of the analysis of evolutionary rates, and confront the challenges of settings where geochronologic resolution may be greater than paleontologic resolution.

Type
Research Article
Copyright
Copyright © by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alroy, J. 1994. Appearance event ordination: a new biochronologic method. Paleobiology, 20:191207.CrossRefGoogle Scholar
Bookstein, F. L. 1987. Random walk and the existence of evolutionary rates. Paleobiology, 13:446464.CrossRefGoogle Scholar
Bowring, S. A., Grotzinger, J. P., Isachsen, C. E., Knoll, A. H., Pelechaty, S. M., and Kolosov, P. 1993. Calibrating rates of Early Cambrian evolution. Science, 261:12931298.CrossRefGoogle ScholarPubMed
Bowring, S. A., Erwin, D. H., Jin, Y. G., Martin, M. W., Davidek, K. L., and Wang, W. 1998. U/Pb zircon geochronology and tempo of the end-Permian mass extinction. Science, 280:10391045.CrossRefGoogle ScholarPubMed
Elder, W. P. 1989. Molluscan extinction patterns across the Cenomanian-Turonian extinction boundary in the Western Interior of the United States. Paleobiology, 15:157169.CrossRefGoogle Scholar
Erwin, D. H. 2006a. Dates and Rates: Temporal resolution in the deep time stratigraphic record. Annual Review of Earth and Planetary Science, 34:569589.CrossRefGoogle Scholar
Erwin, D. H. 2006b. Extinction. How Life on Earth Nearly Ended 250 Million Years Ago. Princeton University Press, Princeton, NJ, 296 p.Google Scholar
Fischer, A. G. 1995. Cyclostratigraphy – Quo vadis? In House, M. R. and Gale, A. S. Orbital Forcing Time Scales and Cyclostratigraphy, Geological Society of London, London pp 199204.Google Scholar
Gingerich, P. D. 1993. Quantification and comparison of evolutionary rates. American Journal of Science, 293-A:453478.Google Scholar
Gingerich, P. D. 2001. Rates of evolution on the time scale of the evolutionary process. Genetica, 112–113:127144.CrossRefGoogle Scholar
Goldhammer, R. K., Dunn, P. A., and Hardie, L. A. 1987. High-frequency glacio-eustatic sea-level oscillations with Milankovitch characteristics recorded in Middle Triassic platform carbonates in northern Italy. American Journal of Science, 287:853892.CrossRefGoogle Scholar
Gradstein, F. M., Ogg, J. and Smith, A. B., eds. 2004. A Geologic Time Scale 2004. Cambridge University Press, Cambridge, 589 p.CrossRefGoogle Scholar
Grafton, A. 2003. Dating history: the Renaissance and the reformation of chronology. Daedalus, Spring 2003:7486.Google Scholar
Hairston, N. G. Jr., Ellner, S. P., Geber, M. A., Yoshida, T., and Fox, J. A. 2005. Rapid evolution and the convergence of ecological and evolutionary time. Ecology Letters, 8:11141127.CrossRefGoogle Scholar
Harries, P. J., and Little, C. T. S. 1999. The early Toarcian (Early Jurassic) and Cenomanian-Turonian (Late Cretaceous) mass extinctions: similarities and contrasts. Palaeogeography, Palaeoclimatology and Palaeoecology, 154:3966.CrossRefGoogle Scholar
Hendry, A. P., and Kinnison, M. T. 1999. The pace of modern life: measuring rates of contemporary microevolution. Evolution, 53:16371653.CrossRefGoogle ScholarPubMed
Hinnov, L. A. 2004. Earth's orbital parameters and cycle stratigraphy. In Gradstein, F. M. and Ogg, J. (eds) Geological Time Scale 2004. Cambridge University Press, Cambridge pp 5562.Google Scholar
Isachsen, C. E., Bowring, S. A., Landing, E., and Samson, S. D. 1994. New constraint on the division of Cambrian time. Geology, 22:496498.2.3.CO;2>CrossRefGoogle Scholar
Jin, Y. G., Wang, Y., Wang, W., Shang, Q. H., Cao, C. Q., and Erwin, D. H. 2000. Pattern of marine mass extinction near the Permian-Triassic boundary in South China. Science, 289:432436.CrossRefGoogle ScholarPubMed
Kowalewski, M., and Bambach, R. K. 2003. Limits of Paleontological resolution, p. 148. In Harries, P. J. (ed.), High Resolution Approaches in Stratigraphic Paleontology. Kluwer Academic Publisher, Dordrecht.Google Scholar
Kurtén, B. 1959. Rates of evolution in fossil mammals. Cold Spring Harbon Symposium in Quantitative Biology 24:314334.Google ScholarPubMed
Laskar, J., Robutel, P., Jourel, F., Gastineau, M., Correia, A. C. M., and Levad, B. 2004. A long term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics, 428:261285.CrossRefGoogle Scholar
Leckie, R. M., Bralower, T. J., and Cashman, R. 2002. Oceanic anoxia events and plankton evolution: Biotic response to tectonic forcing during the mid-Cretaceous. Paleoceanography, 17:129.CrossRefGoogle Scholar
Meyers, S., Sageman, B. and Hinnov, L. 2001. Integrated quantitative stratigraphy of the Cenomanian-Turonian Bridge Creek Limestone member using evolutive harmonic analysis and stratigraphic modeling. Journal of Sedimentary Geology 71:129.Google Scholar
Mundil, R., Zuhlke, R., Bechstadt, T., Peterhansel, A., Egenhoff, S. O., Oberli, F., Meier, M., Brack, P., and Rieber, H. 2003. Cyclicities in Triassic platform carbonates: synchronizing radio-isotopic and orbital clocks. Terra Nova, 15:8187.CrossRefGoogle Scholar
Noller, J. S., Sower, J. M., and Lettis, W. R. eds. 2000. Quaternary Geochronology. Methods and Applications. American Geophysical Union. Washington, D. C. CrossRefGoogle Scholar
Odin, G. S. (ed.) 1982. Numerical Dating in Stratigraphy. Wiley, New York, 1092 p.Google Scholar
Olsen, P. E., and Kent, D. V. 1996. Milankovitch climate forcing in the tropics of Pangaea during the Late Triassic. Palaeogeography, Palaeoclimatology, Palaeoecology, 122:126.CrossRefGoogle Scholar
Olsen, P. E., and Kent, D. V. 1999. Long-period Milankovitc cycles from the Late Triassic and Early Jurassic of eastern North America and their implications for the calibration of the Early Mesozoic time-scale and the long-term behavior of the planets. Philisophical Transactions of the Royal Society, London, Ser. A, 357:17611786.CrossRefGoogle Scholar
Preto, N., Hinnov, L. A., Hardie, L. A., De Zanche, V. 2001. Middle Triassic orbital signature recorded in the shallow-marine Latemar carbonate buildup (Dolomites, Italy). Geology 26: 403406.Google Scholar
Renne, P. R., and Basu, A. R. 1991. Rapid eruption of the Siberian Traps Flood Basalts at the Permo-Triassic Boundary. Science, 253:176179.CrossRefGoogle ScholarPubMed
Renne, P. R., Zhang, Z. C., Richards, M. A., Black, M. T., and Basu, A. R. 1995. Synchrony and causal relations between Permian-Triassic bourndary crises and Siberian flood volcanism. Science, 269:14131416.CrossRefGoogle ScholarPubMed
Roopnarine, P. D. 2003. Analysis of rates of morphologic evolution. Annual Review of Ecology, Evolution and Systematics, 34:605632.CrossRefGoogle Scholar
Rudwick, M. J. S. 2005. Burstsing the Limits of Time: The Reconstruction of Geohistory in the Age of Revolution. University of Chicago Press, Chicago, 840 p.CrossRefGoogle Scholar
Sadler, P. M. 2004. Quantitative biostratigraphy –achieving finer resolution in global correlation. Annual Review of Earth and Planetary Science, 32:187213.CrossRefGoogle Scholar
Sadler, P. M. 2006. Composite time lines: A means to leverage resolving power from radioisotopic dates and biostratigraphy. Paleontological Society Papers 12: 126.CrossRefGoogle Scholar
Sageman, B. B., Rich, J. E., Arthur, M. A., Birchfield, G. E., and Dean, W. E. 1997. Evidence for Milankovitch periodicities in Cenomanian-Turonian lithologic and geochemical cycles, Western Interior US. Journal of Sedimentary Resesarch, 67:286301.Google Scholar
Sageman, B. B., Meyers, S. R., and Arthur, M. A. 2006. Orbial time scale and new C-isotope record for Cenomanian-Turonian boundary stratotype. Geology, 34:125128.CrossRefGoogle Scholar
Schindel, D. E. 1980. Microstratigraphic sampling and the limits of paleontological resolution. Paleobiology, 6:408426.CrossRefGoogle Scholar
Sheets, H. D., and Mitchell, C. E. 2001. Why the null matters: statistical tests, random walks and evolution. Genetica, 112–113:105125.CrossRefGoogle Scholar
Simpson, G. G. 1944. Tempo and Mode in Evolution. Columbia University Press, New York, 237 p.Google Scholar
Slobodkin, L. B. 1961. Growth and Development of Animal Populations. Holt, Reinhart and Winston, New York, 184 p.Google Scholar
Thompson, J. N. 1998. Rapid Evolution as an ecological process. Trends in Ecology and Evolution, 13:329332.CrossRefGoogle ScholarPubMed
Zuhlke, R., Bechstadt, T., and Mundil, R. 2003. Sub-Milankovitch and Milankovitch forcing on a model Mesozoic carbonate platform — the Latemar (Middle Triassic, Italy). Terra Nova, 15:6980.CrossRefGoogle Scholar