Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T06:10:16.989Z Has data issue: false hasContentIssue false

Neoproterozoic-Cambrian microbialite record

Published online by Cambridge University Press:  21 July 2017

Russell S. Shapiro*
Affiliation:
Department of Geology, Gustavus Adolphus College, 800 W. College Saint Peter, Minnesota 56082
Get access

Abstract

Microbes and the sedimentary record of their activity, microbialites, have existed since the Archaean. During the Neoproterozoic-Cambrian interval, there is a marked shift in the fossil record of microbialites with the widespread proliferation of thrombolites (clotted microbialites) and the appearance and proliferation of dendrolites (microbialites composed of dendritic clusters) alongside stromatolites (laminated microbialites). Calcimicrobes also diversified during this interval. The end of this resurgence coincided with the increase in invertebrate taxa at the end of the Early Ordovician. The ìMicrobialite Resurgenceî has long been recognized but the importance of the Neoporoterozoic microbialite record for deciphering trends of this interval has not been so widely realized. It is critical to note that some of the oldest skeletal invertebrates and calcimicrobes are found in Neoproterozoic microbial reefs. Also, microbe-invertebrate synecology and invertebrate abundance trends during this interval suggests that a simple model that keys the resurgence tied in to a lack of competition from reef-building sponges and corals may not be valid. Current re-evaluation of the environmental conditions, principally the fluctuations in the geochemical conditions of the global oceans and atmosphere, will likely shed new light on understanding the Neoproterozoic-Cambrian microbialite record.

Type
Research Article
Copyright
Copyright © 2004 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aitken, J. D. 1967. Classification and environmental significance of cryptalgal limestones and dolomites, with illustrations from the Cambrian and Ordovician of southwestern Alberta. Journal of Sedimentary Petrology, 37:11631178.Google Scholar
Aitken, J. D., and Narbonne, G. M. 1989. Two occurrences of Precambrian thrombolites from the Mackenzie Mountains, Northwestern Canada. Palaios, 4:384388.Google Scholar
Armella, C. 1994. Thrombolitic-stomatolitic cycles of the Cambro-Ordovician boundary sequence, Precordillera Oriental basin, Western Argentina, p. 421441. In Bertrand-Sarfati, J. and Monty, C. L. V. (eds.), Phanerozoic Stromatolites II. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Awramik, S. M. 1992. The history and significance of stromatolites, p. 435449. In Schidlowski, M., Golubic, S., Kimberley, M. M., McKirdy, D. M., and Trudinger, P. A. (eds.), Early Organic Evolution: Implications for Mineral and Energy Resources. Springer-Verlag, Berlin.Google Scholar
Awramik, S. M., Corsetti, F. A., and Shapiro, R. S. 2000. Stromatolites and the pre-Phanerozoic to Cambrian history of the area southeast of Death Valley. San Bernardino County Museum Association Quarterly, 47:6474.Google Scholar
Awramik, S. M., and Sprinkle, J. 1999. Proterozoic stromatolites: the first marine evolutionary biota. Historical Biology, 13:241253.Google Scholar
Bottjer, D. J., Droser, M. L., Sheehan, P. M., and Mcghee, G. R. Jr. 2001. The ecological architecture of major events in the Phanerozoic history of marine invertebrate life, p. 3561. In Allmon, W.D. and Bottjer, D. J. (eds.), Evolutionary Paleoecology: The Ecological Context of Macroevolutionary Change. Columbia University Press, New York.Google Scholar
Burne, R. V., and Moore, L. S. 1987. Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios, 2:241254.CrossRefGoogle Scholar
Brunton, F. R., and Dixon, O. A. 1994. Siliceous sponge-microbe biotic associations and their recurrence through the Phanerozoic as reef mound constructors. Palaios, 9:370387.Google Scholar
Cañas, F., and Carrera, M. 1993. Early Ordovician microbial-sponge-receptaculitid bioherms of the Precordillera, western Argentina. Facies, 29:169178.CrossRefGoogle Scholar
De Freitas, T., and Mayr, U. 1995. Kilometre-scale microbial buildups in a rimmed carbonate platform succession, Arctic Canada: new insight on Lower Ordovician reef facies. Bulletin of Canadian Petroleum Geology, 43:407432.Google Scholar
Droser, M.L., Fortey, R. A., and Li, Xing. 1996. The Ordovician radiation. American Scientist, 84:122131.Google Scholar
Grotzinger, J. P., Watters, W. A., and Knoll, A. 2000. Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia. Paleobiology, 26:334359.Google Scholar
Hamdi, B., Rozanov, A. Yu., and Zhuravlev, A. Yu. 1995. Latest Middle Cambrian metazoan reef from northern Iran. Geological Magazine, 132:367373.Google Scholar
James, N. P., and Gravestock, D. I. 1990. Lower Cambrian shelf and shelf margin buildups, Flinders Ranges, South Australia. Sedimentology, 37:455480.Google Scholar
Johnson, J. H. 1966. A review of the Cambrian algae. Quarterly of the Colorado School of Mines, 61,162 p.Google Scholar
Kah, L. C., and Grotzinger, J. P. 1992. Early Proterozoic (1.9 Ga) thrombolites of the Rocknest Formation, Northwest Territories. Palaios. 7:305315 Google Scholar
Kennard, J. M. 1994. Thrombolites and stromatolites within shale-carbonate cycles, Middle-Late Cambrian Shannon Formation, Amadeus Basin, central Australia, p. 443471. In Bertrand-Sarfati, J. and Monty, C. L. V. (eds.), Phanerozoic Stromatolites II. Kluwer Academic, Dordrecht, Netherlands.Google Scholar
Knoll, A. H. 2003. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, New Jersey, 277 p.Google Scholar
Kruse, P. D., Zhuravlev, A. Yu., and James, N. P. 1995. Primodial metazoan-calcimicrobial reefs: Tommotian (Early Cambrian) of the Siberian Platform. Palaios, 10:291321.Google Scholar
Xianghua, Meng, Ge, Ming, and Tucker, M. E. 1997. Sequence stratigraphy, sea-level changes and depositional systems in the Cambro-Ordovician of the North China carbonate platform. Sedimentary Geology, 114:189222.Google Scholar
Merz-Preiß, M. 2000. Calcification in cyanobacteria, p 50-56. In Riding, R. E. and Awramik, S. M. (eds.), Microbial Sediments. Springer, Berlin.Google Scholar
Nicholson, H. A., and Etheridge, R. 1880. A monograph of the Silurian fossils of the Girvan district of Ayrshire. Scotland Geological Survey Memoir 23, plate 9.Google Scholar
Oliver, L. K., and Rowland, S. M. 2002. Microbialite reefs at the close of the Proterozoic Eon: The middle member Deep Spring Formation at Mt. Dunfee, Nevada, p. 97122. In Corsetti, F. A. (ed.), Proterozoic-Cambrian of the Great Basin and Beyond. Pacific Section, SEPM (Society for Sedimentary Geology), Book 93, Fullerton, California.Google Scholar
Pfeil, R. W., and Read, J. F. 1980. Cambrian carbonate platform margin facies, Shady Dolomite, southwestern Virginia, U.S.A. Journal of Sedimentary Petrology, 50:91116.Google Scholar
Pratt, B. R. 1984. Epiphyton and Renalcis—diagenetic microfossils from calcificaiton of coccoid blue-green algae. Journal of Sedimentary Petrology. 54:948971.Google Scholar
Pratt, B. R. 1989. Early Ordovician cryptalgal-sponge reefs, Survey Peak Formation, Rocky Mountains, Alberta, p. 213217. In Geldsetzer, H. H. J., James, N. P., and Tebbutt, G. E. (eds.), Reefs: Canada and Adjacent Areas. Canadian Society of Petroleum Geologists Memoir 13.Google Scholar
Pratt, B. R. 1995. The origin, biota, and evolution of deep-water mud-mounds, p. 49123. In Monty, C. L. V., Bosence, D. W. J., Bridges, P. H., and Pratt, B. R. (eds.), Carbonate Mud-Mounds—Their Origin and Evolution. International Association of Sedimentologists Special Publication 23.Google Scholar
Pratt, B. R., and James, N. P. 1982. Cryptalgal-metazoan bioherms of Early Ordovician age in the St. George Group, western Newfoundland. Sedimentology, 29:543569.Google Scholar
Pratt, B. R., Spincer, B. R., Wood, R. A., and Zhuravlev, A. Yu. 2001. Ecology and evolution of Cambrian reefs, p. 254274. In Zhuravlev, A. Yu. and Riding, R. (eds.), The Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Riding, R. 1990. Classification of microbial carbonates, p. 2151. In Riding, R. (ed.), Calcareous Algae and Stromatolites. Springer-Verlag, New York.Google Scholar
Riding, R. 2000. Microbial carbonates: the geological record of calcified bacterial-algal mats and biofilms. Sedimentology, 47:179214.Google Scholar
Riding, R. 2002. Structure and composition of organic reefs and carbonate mud mounds: concepts and categories. Earth-Science Reviews, 58:163231.Google Scholar
Riding, R., and Zhuravlev, A. Yu. 1995. Structure and diversity of the oldest sponge-microbe reefs: Lower Cambrian, Aldan River, Siberia. Geology, 23:649652.2.3.CO;2>CrossRefGoogle Scholar
Rowland, S., and Shapiro, R. S. 2002. Reef patterns and environmental influences in the Cambrian and earliest Ordovician, p. 95128. In Kiessling, W., and Flügel, E. (eds.), Phanerozoic Reef Patterns. SEPM (Society for Sedimentary Geology), Special Publication 72.Google Scholar
Shapiro, R. S. 2000. A comment on the systematic confusion of thrombolites. Palaios, 15:166169.Google Scholar
Shapiro, R. S., and Awramik, S. M. 2000. Microbialite morphostratigraphy as a tool for correlating Late Cambrian-early Ordovician sequences. Journal of Geology, 108:171180.Google Scholar
Shapiro, R. S., and Rigby, J. K. 2004. First occurrence of an in situ anthaspidellid sponge in a dendrolite mound (Upper Cambrian of the Great Basin, U.S.A.). Journal of Paleontology, 78:645650.Google Scholar
Sheehan, P. M., and Harris, M. T. 2004. Microbialite resurgence after the Late Ordovician extinction. Nature, 4307578.Google Scholar
Spincer, B. R. 1996. The palaeoecology of some Upper Cambrian microbial-sponge-eocrinoid reefs, central Texas. Sixth North American Paleontological Convention Abstracts of Papers. The Paleontological Society Special Publication, 8:367.Google Scholar
Spincer, B. R. 1998. Oolitized fragments of filamentous calcimicrobes and the pseudofossil affinity of Nuia Maslov from the Upper Cambrian rocks of central Texas. Journal of Paleontology, 72:577584.Google Scholar
Stevens, N. P., and Sumner, D. 2002. Renalcids as fossilized biofilm clusters. Palaios, 17:225236.Google Scholar
Turner, E. C., Narbonne, G. M., and James, N. P. 1993. Neoproterozoic reef microstructures from the Little Dal Group, northwestern Canada. Geology, 21:259262.Google Scholar
Turner, E. C., James, N. P., and Narbonne, G. M. 1997. Growth dynamics of Neoproterozoic calcimicrobial reefs, Mackenzie Mountains, Northwest Canada. Journal of Sedimentary Research, 67:437450.Google Scholar
Turner, E. C., James, N. P., and Narbonne, G. M. 2000a. Taphonomic control on the microstructure in Early Neoproterozoic reefal stromatolites and thrombolites. Palaios, 15:87111.Google Scholar
Turner, E. C., Narbonne, G. M., and James, N. P. 2000b. Framework composition of early Neoproterozoic calcimicrobial reefs and associated microbialites, MacKenzie Mountains, N.W.T., Canada, p. 179205. In. Grotzinger, J. P. and James, N. P. (eds.), Carbonate Sedimentation and Diagenesis in the Evolving Precambrian World. SEPM (Society for Sedimentary Geology) Special Publication, 67.Google Scholar
Vennin, E., Alvaro, J. J., Moreno-Eiris, E., and Perejon, A. 2003. Early Cambrian coelobiontic communities in tectonically unstable crevices developed in Neoproterozoic andesites, Ossa-Morena, southern Spain. Lethaia, 36:5365.Google Scholar
Walter, M. R., and Heys, G. R. 1985. Links between the rise of the Metazoa and the decline of stromatolites. Precambrian Research, 29:149174.Google Scholar
Wood, R. 1999. Reef Evolution. Oxford University Press, Oxford, 414 p.Google Scholar
Zhuravlev, A. Yu. 1996. Reef ecosystem recovery after the Early Cambrian extinction, p. 7996. In Hart, M. B. (ed.), Biotic recovery from mass extinction events. Geological Society (London) Special Publication, 102.Google Scholar