Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T11:20:07.281Z Has data issue: false hasContentIssue false

Morphological variation and homoplasy: the challenge of Paleozoic coral systematics

Published online by Cambridge University Press:  21 July 2017

Gregory E. Webb*
Affiliation:
Department of Earth Sciences, University of Queensland, Brisbane QLD 4072, Australia
Get access

Abstract

The extinct Paleozoic coral groups Rugosa and Tabulata suffer from confused systematics because of extreme morphological variation, pervasive homoplasy, and relatively simple skeletal morphology. Morphological variation occurs within individuals or colonies, between individuals within a population, and between populations. Variation at each level may have both genetic and ecologic components. Homoplasy is very abundant and extended sequences of parallel or convergent character transformations have led to the recognition of “recurrent evolutionary trends” in many lineages.

Morphological variation causes much difficulty in the recognition and characterization of coral species and homoplasy is problematic for phylogeny reconstruction. Improved coral systematics require a more holistic approach to both taxonomy and phylogeny analysis, including: 1) population-based species concepts, as opposed to typological approaches; 2) use of more quantitative techniques in species discrimination and description; 3) more attention to subtle morphological elements, such as microstructure; 4) description of ecological settings (depositional environments) to aid in analysis of behavior and to help unravel ecophenotypic plasticity; and 5) use of stratigraphic and geographic distribution data in phylogeny analysis, because skeletal morphology is inadequate by itself.

Type
Research Article
Copyright
Copyright © 1996 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnes, D. J. 1973. Growth in colonial scleractinians. Bulletin of Marine Science, 23:280298.Google Scholar
Bernard, H. M. 1903. The family Poritidae, I, the genus Goniopora. Catalogue of the Madreporarian Corals in the British Museum (Natural History), 4:1206.Google Scholar
Bernard, H. M. 1905. The family Poritidae, II, The genus Porites, Pt. I. Porites of the Indo-Pacific region. Catalogue of the Madreporarian Corals in the British Museum (Natural History), 5:1303.Google Scholar
Bernard, H. M. 1906. The family Poritidae, II, The genus Porites, Pt. II. Porites of the Atlantic and Wet Indies with the European fossil forms. The genus Goniopora, a supplement to Vol. 4. Catalogue of the Madreporarian Corals in the British Museum (Natural History), 6:1173.Google Scholar
Bondarenko, O. B. 1975. Ob astogeneticheskom metode izucheniya kolonialnykh Kishechnopolostnykh (na primere geliolitedey). Paleontologichski Zhurnal, 1975(2):1727.Google Scholar
Brundin, L. 1972. Evolution, causal biology, and classification. Zoologica Scripta, 1:107120.CrossRefGoogle Scholar
Budd, A. F. 1979. Phenotypic plasticity in the reef corals Montastraea annularis (Ellis and Sonlander) and Siderastraea siderea (Ellis and Sonlander). Journal of Experimental Marine Biology and Ecology, 39:2554.Google Scholar
Budd, A. F. 1993. Variation within and among morphospecies of Montastraea. Courier Forschungsinstitut Senckenberg, 164:241254.Google Scholar
Cairns, S. D. 1984. An application of phylogenetic analysis to the Scleractinia: Family Fungiidae. Palaeontographic Americana, 54:4957.Google Scholar
Cairns, S. D. 1989. Discriminant analysis of Indo-West Pacific Flabellum. Memoirs of the Association of Australasian Palaeontologists, 8:6168.Google Scholar
Coates, A. G., and Oliver, W. A. Jr. 1973. Coloniality in Zoantharian corals, p. 327. In Boardman, R. S., Cheetham, A. H., and Oliver, W. A. Jr. (eds.), Animal Colonies. Dowden, Hutchinson & Ross, Inc., Stroudsburg, Pennsylvania.Google Scholar
Cuffey, R. J., and Pachut, J. F. 1991. Clinal morphological variation along a depth gradient in the living scleractinian reef coral Favia pallida: effects on perceived evolutionary tempos in the fossil record. Palaios, 5:580588.Google Scholar
Cuif, J. P. 1977. Caractères et affinités de Gallitella, nouveau genre de Madréporaires du Carnien des Dolomites. Mémoires du Bureau de Recherches Géologiques et Minières, 89:256263.Google Scholar
Ezaki, Y. 1993. The last representatives of Rugosa in Abadeh and Julfa, Iran: survival and extinction. Courier Forschungsinstitut Senckenberg, 164:7580.Google Scholar
Ezaki, Y. and Kato, M. 1989. Growth bands in a Permian coral. Memoirs of the Association of Australasian Palaeontologists, 8:8390.Google Scholar
Fedorowski, J. 1984. Subjectivity in the evaluation of diagnostic characters and its influence on the taxonomy of the rugose corals. Palaeontographica Americana, 54:8691.Google Scholar
Fedorowski, J. 1987. Upper Palaeozoic rugose corals from southwestern Texas and adjacent areas: Gaptank Formation and Wolfcampian corals. Part 1. Palaeontologia Polonica, 48, 271 p.Google Scholar
Fedorowski, J. 1989. Intraspecific variation in Carboniferous and Permian Rugosa. Memoirs of the Association of Australasian Palaeontologists, 8:712.Google Scholar
Foster, A. B. 1984. The species concept in fossil hermatypic corals: a statistical approach. Palaeontographica Americana, 54:5869.Google Scholar
Foster, A. B. 1985. Variation within coral colonies and its importance for interpreting fossil species. Journal of Paleontology, 59:13591381.Google Scholar
Gregory, J. W. 1898. A collection of Egyptian fossil Madreporaria. Geological Magazine, Dec. 4, 5:241251.Google Scholar
Harper, C. W. Jr., and Platnick, N. I. 1978. Phylogenetic and cladistic hypotheses: a debate. Systematic Zoology, 27:354362.Google Scholar
Hill, D. 1934. The Lower Carboniferous corals of Australia. Proceedings of the Royal Society of Queensland, 45:63115.Google Scholar
Hill, D. 1956. Rugosa, p. F233324. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part F. Coelenterata. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Hill, D. 1981. Coelenterata, Part F, Supplement 1, Rugosa and Tabulata, F1F762. In Teichert, C. (ed.), Treatise on Invertebrate Paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Hoeksema, B. W. 1991. Evolution of body size in mushroom corals (Scleractinia: Fungidae) and its ecomorphological consequences. Netherlands Journal of Zoology, 41:112129.Google Scholar
Hubbard, J. A. E. B., and Pocock, Y. P. 1972. Sediment rejection by scleractinian corals: a key to palaeoenvironmental reconstruction. Geologische Rundschau, 61:598626.Google Scholar
Hubbard, J. A. E. B., and Pocock, Y. P. 1984. Scleractinian functional morphology: a key to paleoecological reconstruction. Palaeontographica Americana, 54:523530.Google Scholar
International Commission on Zoological Nomenclature. 1961. International Code of Zoological Nomenclature. International Trust for Zoological Nomenclature, London, 176 p.Google Scholar
Iljina, T. G. 1977. Development of the septa in rugose corals of the superfamily Polycoeliaceae. Mémoires du Bureau de Recherches Géologiques et Minières, 89:7886.Google Scholar
Jeffords, R. M. 1947. Pennsylvanian lophophyllidid corals. University of Kansas Paleontological Contributions, Coelenterata, Article 1, 84 p.Google Scholar
Jeffords, R. M. 1955. Septal arrangement and ontogeny in the porpitid corals. University of Kansas Paleontological Contributions, Coelenterata, Article 2, 16 p.Google Scholar
Kanmera, K. 1964. Triassic coral faunas from the Konosé Group in Kyushu. Memoirs of the Faculty of Science, Kyushu University, Series D, Geology, 15:117147.Google Scholar
Lang, W. D. 1917. Homeomorphy in fossil corals. Proceedings of the Geologist's Association, 28:8594.Google Scholar
Lang, W. D. 1923. Trends in British Carboniferous corals. Proceedings of the Geologist's Association, 34:120136.Google Scholar
Lang, W. D. 1938. Some further considerations on trends in corals. Proceedings of the Geologist's Association, 49:148159.Google Scholar
Lang, W. D., Smith, S., and Thomas, H. D. 1940. Index of Palaeozoic coral genera. British Museum of Natural History, 231 p.Google Scholar
Lee, D.-J., and Noble, J. P. A. 1988. Heliolitid corals of the Upper Silurian West Point formation, Gaspé, Québec. Journal of Paleontology, 62:855865.Google Scholar
Le Tissier, M. D'A. A., and Scrutton, C. T. 1993. A review of density banding in Recent and fossil corals. Courier Forschungsistitut Senckenberg, 164:5561.Google Scholar
Liao, W.-H., and Xia, J.-B. 1993. Mesozoic and early Cenozoic scleractinian corals from Tibet. Courier Forschungsinstitut Senckenberg, 164:205210.Google Scholar
McLaren, D. J., and Sutherland, P. K. 1949. Lithostrotion from northeast British Columbia an its bearing on the genomorph concept. Journal of Paleontology, 23:625634.Google Scholar
Ma, T. Y. H. 1933. On the seasonal change of growth in some Palaeozoic corals. Proceedings of the Imperial Akademy of Tokyo, 9:407409.Google Scholar
Miller, K. J. 1992. Morphological variation in the scleractinian coral Platygyra daedalea (Ellis and Sonlander, 1786) - genetically or environmentally determined? Proceedings of the Seventh International Coral Reef Symposium, 1:550556.Google Scholar
Neuman, B. E. E. 1988. Some aspects of the life strategies of early Palaeozoic rugose corals. Lethaia, 21:97114.Google Scholar
Neuman, B. E. E. 1993. Taxonomic reliability of morphological structures in rugose corals. Courier Forschungsinstitut Senckenberg, 164:119125.Google Scholar
Nudds, J. R. 1993. Siphonodendron and Dorlodotia: paedomorphic evolution in Carboniferous rugose corals? Courier Forschungsinstitut Senckenberg, 164:127130.Google Scholar
Oliver, W. A. Jr. 1966. Description of dimorphism in Striatopora flexuosa Hall. Palaeontology, 9:448454.Google Scholar
Oliver, W. A. Jr. 1976. Noncystimorph colonial rugose corals of the Onesquethaw and lower Cazenovia Stages (Lower and Middle Devonian) in New York and adjacent areas. United States Geological Survey Professional Paper 869:1156.Google Scholar
Oliver, W. A. Jr. 1980. The relationship of scleractinian corals to the rugose corals. Paleobiology, 6:146160.Google Scholar
Oliver, W. A. Jr. 1989. Intraspecific variation in pre-Carboniferous rugose corals: a subjective review. Memoirs of the Association of Australasian Palaeontologists, 8:16.Google Scholar
Oliver, W. A. Jr. 1993. Origins and relationships of Devonian Rugosa endemic to the Eastern Americas Realm. Courier Forschungsinstitut Senckenberg, 164:131140.Google Scholar
Oliver, W. A. Jr. In press a. Evolutionary relationships of the Zaphrentidae and Craspedophyllidae (rugose corals, Devonian) in eastern North America. Geological Society of America Special Paper.Google Scholar
Oliver, W. A. Jr. In press b. Origins and relationships of colonial Heliophyllum in the Middle Devonian (Givetian) of New York. Boletín de la Real Sociedad Espanola de Historia Natural.Google Scholar
Oliver, W. A. Jr., and Sorauf, J. E. 1994. Branching Heliophyllum (Devonian rugose coral) from New York and Ohio. Journal of Paleontology, 68:11831201.CrossRefGoogle Scholar
Pandolfi, J. M. 1989a. Developmental sequences in colonial corals: an overview. Memoirs of the Association of Australasian Palaeontologists, 8:6981.Google Scholar
Pandolfi, J. M. 1989b. Phylogenetic analysis of the early tabulate corals. Palaeontology, 32:745764.Google Scholar
Pandolfi, J. M. and Burke, C. D. 1989a. Environmental distribution of colony growth form in the favositid Pleurodictyum americanum. Lethaia, 22:6984.Google Scholar
Pandolfi, J. M. and Burke, C. D. 1989b. Shape analysis of two sympatric coral species: implications for taxonomy and evolution. Lethaia, 22:183193.Google Scholar
Pedder, A. E. H., and Oliver, W. A. Jr. 1982. Stauromatidium and Stauromatidiidae, new genus and family of Upper Silurian and Lower Devonian rugose corals. Geological Survey of Canada Bulletin, 352, 43 p.Google Scholar
Potts, D. C. 1978. Differentiation in coral populations. Atoll Research Bulletin, 220:5574.CrossRefGoogle Scholar
Potts, D. C. 1984. Generation times and the Quaternary evolution of reef-building corals. Paleobiology, 10:4858.Google Scholar
Potts, D. C., Budd, A. F., and Garthwaite, R. L. 1993. Soft tissue vs. skeletal approaches to species recognition and phylogeny reconstruction in corals. Courier Forschungsinstitut Senckenberg, 164:221231.Google Scholar
Poty, E. 1993. Heterochronic processes in some Lower Carboniferous rugose corals. Courier Forschungsinstitut Senckenberg, 164:141152.Google Scholar
Saether, O. A. 1983. The canalized evolutionary potential: inconsistencies in phylogenetic reasoning. Systematic Zoology, 32:343359.Google Scholar
Sando, W. J. 1976. Revision of the Carboniferous genus Aulina Smith (Coelenterata, Anthozoa). United States Geological Survey Journal of Research, 4:421435.Google Scholar
Schmidt, H. 1972. Die Nesselkapseln der Anthozoa und ihre Bedeuntung für die phylogenetische systematik. Helgoländer Wissenschaftliche Meeresuntersuchungen, 123:422458.Google Scholar
Schmidt, H. 1974. On the evolution of the Anthozoa. Proceedings of the 2nd International Coral Reef Symposium, 1:533560.Google Scholar
Scrutton, C. T. 1989. Intracolonial and intraspecific variation in tabulate corals. Memoirs of the Association of Australasian Palaeontologists, 8:3343.Google Scholar
Sebens, K. P., and Done, T. J. 1992. Water flow, growth form and distribution of scleractinian corals: Davies Reef (GBR), Australia. Proceedings of the Seventh International Coral Reef Symposium, 1:557568.Google Scholar
Smith, S., and Lang, W. D. 1930. Description of the type specimens of some Carboniferous corals of the genus “Diphyphyllum,” “Stylastraea,” Aulophyllum, and Chaetetes. Annals and Magazine of Natural History, Series 10, 5:177194.Google Scholar
Smith, S., and Thomas, H. D. 1963. On Amplexus coralloides Sowerby and some ampleximorph corals from the English Devonian. Annals and Magazine of Natural History, Series 13, 6:161172.CrossRefGoogle Scholar
Sorauf, J. E., and Mackey, S. D. 1989. Variation and biometrics in rugose corals. Memoirs of the Association of Australasian Palaeontologists, 8:2331.Google Scholar
Sorauf, J. E., and Oliver, W. A. Jr. 1976. Septal carinae and microstructure in Middle Devonian Heliophyllum (Rugosa) from New York State. Journal of Paleontology, 50:331343.Google Scholar
Sorauf, J. E., and Stein, W. E. Jr. 1993. Biological fabric and the study of growth in the Devonian tabulate coral genera Lecfadites and Favosites. Courier Forschungsinstitut Senckenberg, 164:159168.Google Scholar
Sowerby, J. 1814. The Mineral Conchology of Great Britain, v. 1, pt. 13, 153168. B. Meredith, London.Google Scholar
Spasskiy, N. Y., and Kravtsov, A. G. 1971. Zakonomernosti poyavleniya morfologicheski skhodnykh struktur evolutsii chetyrekhluchevykh korallov. Zapiski Leningradskogo Ordenov Lenina i Trudovogo Krasnogo Znameni Gornogo Instituta im G. V. Plekhsanova, Paleontologiya, 59:522.Google Scholar
Stewart, C.-B. 1993. The powers and pitfalls of parsimony. Nature, 361:603607.Google Scholar
Sutherland, P. K. 1989. Intraspecific variability in the rugose coral Stelechophyllum (?) McLareni from the Lower Carboniferous (Visean) of northeastern British Columbia. Memoirs of the Association of Australasian Palaeontologists, 8:1322.Google Scholar
Thomson, K. S. 1988. Morphogenesis and Evolution. Oxford University Press, New York, 154 p.Google Scholar
Tripp, K. 1933. Die Favositen Gotlands. Palaeontographica A, 79:75142.Google Scholar
Veron, J. E. N. 1995. Corals in Space and Time: Biogeography and Evolution of the Scleractinia. University of New South Wales Press, Sydney.Google Scholar
Veron, J. E. N., and Pichon, M. 1976. Scleractinia of eastern Australia, Part 1. Families Thamnasteriidae, Astrocoeniidae and Pocilloporiidae. Australian Institute of Marine Sciences Monograph Series, 1, 86 p.Google Scholar
Webb, G. E. 1984. Columella development in Lophophyllidium n. sp., and its taxonomic implications, Imo formation, Latest Mississippian, northern Arkansas. Palaeontographica Americana, 54:509514.Google Scholar
Webb, G. E. 1990. Lower Carboniferous coral fauna of the Rockhampton Group, east-central Queensland. Memoirs of the Association of Australaisian Palaeontologists, 10:1167.Google Scholar
Webb, G. E. 1993. Phylogeny reconstruction: problems posed by Paleozoic corals. Courier Forschungsinstitut Senckenberg, 164:7174.Google Scholar
Webb, G. E. 1994. Parallelism, non-biotic data and phylogeny reconstruction in paleobiology. Lethaia, 27:185192.Google Scholar
Webb, G. E., and Sutherland, P. K. 1993. Coral fauna of the Imo Formation, uppermost Chesterian, north-central Arkansas. Journal of Paleontology, 67:179193.Google Scholar
Wells, J. W. 1934. Some fossil corals from the West Indies. Proceedings of the United States National Museum, 83:71110.Google Scholar
Wijsman-Best, M. 1974. Habitat-induced modification of reef corals (Faviidae) and its consequence for taxonomy. Proceedings of the 2nd International Coral Reef Symposium, 2:217228.Google Scholar
Willis, B. L. 1985. Phenotypic plasticity versus phenotypic stability in the reef corals Turbinaria mesenterina and Pavona cactus. Proceedings of the Fifth International Coral Reef Congress, 4:107118.Google Scholar
Willis, B. L. 1990. Species concepts in extent scleractinian corals: considerations based on reproductive biology and genotypic population structures. Systematic Botany, 15:136149.Google Scholar
Wilson, E. C. 1963. An evaluation of the genomorph concept in rugose corals. Systematic Zoology, 12:8390.Google Scholar
Wood-Jones, F. 1907. On the growth forms and supposed species in corals. Proceedings of the Zoological Society of London 1907, 518556.Google Scholar
Young, G. A., and Elias, R. J. 1993. Biometry and intraspecific variation in favositids and heliolitid corals. Courier Forschungsinstitut Senckenberg, 164:283291.Google Scholar
Young, G. A., and Noble, J. P. A. 1990. Silurian Heliolitidae (Anthozoa, Tabulata) from the Chaleurs Bay region, Canada. Journal of Paleontology, 64:4460.Google Scholar