Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T14:21:31.792Z Has data issue: false hasContentIssue false

Modeling 400 Million Years of Plant Hydraulics

Published online by Cambridge University Press:  21 July 2017

Jonathan P. Wilson*
Affiliation:
Department of Biology, Haverford College, 370 Lancaster Ave., Haverford, PA 19041 USA
Get access

Abstract

Mathematical models of fluid flow thorough plant stems permit quantitative assessment of plant ecology using anatomy alone, allowing extinct and extant plants to be measured against one another. Through this process, a series of patterns and observations about plant ecology and evolution can be made. First, many plants evolved high rates of water transport through the evolution of a diverse suite of anatomical adaptations over the last four hundred million years. Second, adaptations to increase hydraulic supply to leaves tend to precede, in evolutionary time, adaptations to increase the safety margin of plant water transport. Third, anatomical breakthroughs in water transport function tend to occur in step with ecological breakthroughs, including the appearance of leaves during the Devonian, the evolution of high leaf areas in early seed plants during the Carboniferous, and the early radiation of flowering plants during the Cretaceous. Quantitative assessment of plant function not only opens up the plant fossil record to ecological comparison, but also provides data that can be used to model fluxes and dynamics of past ecosystems that are rooted in individual plant anatomy.

Type
Research Article
Copyright
Copyright © 2013 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andrews, H. N. Jr. 1940. On the stelar anatomy of the pteridosperms with particular reference to the secondary wood. Annals of the Missouri Botanical Garden, 27:51118.Google Scholar
Arens, N. C., Jahren, A. H., and Amundson, R. 2000. Can C3 plants faithfully record the carbon isotopic composition of atmospheric carbon dioxide? Paleobiology, 26:137164.Google Scholar
Bailey, I. W. 1953. Evolution of the tracheary tissue of land plants. American Journal of Botany, 40:48.Google Scholar
Bailey, I.W., and Sinnott, E. 1915. A botanical index of Cretaceous and Tertiary climates. Science, 41:831834.Google Scholar
Bailey, I. W., and Sinnott, E. 1916. The climatic distribution of certain types of angiosperm leaves. American Journal of Botany, 3:2439.Google Scholar
Bailey, I. W., and Thompson, W. P. 1918. Additional notes upon the angiosperms Tetracentron, Trochodendron, and Drimys, in which vessels are absent from the wood. Annals of Botany (Old Series), 32:503512.Google Scholar
Bailey, I. W., and Tupper, W. W. 1918. Size variation in tracheary cells: I. A comparison between the secondary xylems of vascular cryptogams, gymnosperms, and angiosperms. Proceedings of the American Academy of Arts and Sciences, 54:149204.Google Scholar
Bannan, M. W. 1965. Length tangential diameter and length/width ratio of conifer tracheids. Canadian Journal of Botany, 43:967984.Google Scholar
Beck, C. B., Coy, K., and Schmid, R. 1982. Observations on the fine structure of Callixylon wood. American Journal of Botany, 69:5476.Google Scholar
Beerling, D. J., and Royer, D. L. 2002a. Fossil plants as indicators of the Phanerozoic global carbon cycle. Annual Review of Earth and Planetary Sciences, 30:527556.Google Scholar
Beerling, D. J., and Royer, D. L. 2002b. Reading a CO2 signal from fossil stomata. New Phytologist, 153:387397.CrossRefGoogle Scholar
Bliss, M. C. 1939. The tracheal elements in the ferns. American Journal of Botany, 26:620624.Google Scholar
Boyce, C. K., Brodribb, T. J., Feild, T. S., and Zwieniecki, M. A. 2009. Angiosperm leaf vein evolution was physiologically and environmentally transformative. Proceedings of the Royal Society B: Biological Sciences, 276:17711776.Google Scholar
Brodersen, C. R., McElrone, A. J., Choat, B., Matthews, M. A., and Shackel, K. A. 2010. The dynamics of embolism repair in xylem: in vivo visualizations using high-resolution computed tomography. Plant Physiology, 154:10881095.Google Scholar
Brodribb, T. J., and Feild, T. S. 2010. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecology Letters, 13:175183.Google Scholar
Brodribb, T. J., Feild, T. S., and Jordan, G. J. 2007. Leaf maximum photosynthetic rate and venation are linked by hydraulics. Plant Physiology, 144:18901898.Google Scholar
Brodribb, T. J., Feild, T. S., and Sack, L. 2010. Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37:488498.Google Scholar
Brodribb, T. J., and Holbrook, N.M. 2004. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytologist, 162:663670.Google Scholar
Brodribb, T. J., Holbrook, N. M., Zwieniecki, M. A., and Palma, B. 2005. Leaf hydraulic capacity in ferns, conifers and angiosperms: impacts on photosynthetic maxima. New Phytologist, 165:839846.CrossRefGoogle ScholarPubMed
Brodribb, T. J., and McAdam, S. A. M. 2011. Passive origins of stomatal control in vascular plants. Science, 331:582585.Google Scholar
Brongniart, A. 1828. Prodrome d'une histoire des végétaux fossiles. Grand Dictionnaire d'Histoire Naturelle, Paris, 57:170212.Google Scholar
Carlquist, S., and Schneider, E. L. 2007. Tracheary elements in ferns: new techniques, observations, and concepts. American Fern Journal, 97:199211.Google Scholar
Choat, B., Ball, M., Luly, J., and Holtum, J. 2003. Pit membrane porosity and water stress-induced cavitation in four co-existing dry rainforest tree species. Plant Physiology, 131:4148.Google Scholar
Choat, B., Brodie, T. W., Cobb, A. R., Zwieniecki, M. A., and Holbrook, N. M. 2006. Direct measurements of intervessel pit membrane hydraulic resistance in two angiosperm tree species. American Journal of Botany, 93:9931000.CrossRefGoogle ScholarPubMed
Choat, B., Cobb, A. R., and Jansen, S. 2008. Structure and function of bordered pits: new discoveries and impacts on whole-plant hydraulic function. New Phytologist, 177:608626.Google Scholar
Choat, B., Jansen, S., Zwieniecki, M. A., Smets, E., and Holbrook, N. M. 2004. Changes in pit membrane porosity due to deflection and stretching: the role of vestured pits. Journal of Experimental Botany, 55:15691575.CrossRefGoogle ScholarPubMed
Choat, B., and Pittermann, J. 2009. New insights into bordered pit structure and cavitation resistance in angiosperms and conifers. New Phytologist, 182:557560.Google Scholar
Christman, M. A., Sperry, J. S., and Adler, F. R. 2009. Testing the ‘rare pit’ hypothesis for xylem cavitation resistance in three species of Acer. New Phytologist, 182:664674.Google Scholar
Christman, M. A., Sperry, J. S., and Smith, D. D. 2012. Rare pits, large vessels and extreme vulnerability to cavitation in a ring-porous tree species. New Phytologist, 193:713720.Google Scholar
Cichan, M. A. 1985. Vascular cambium and wood development in Carboniferous plants. 2. Sphenophyllum plurifoliatum Williamson and Scott (Sphenophyllales). Botanical Gazette, 146:395403.Google Scholar
Cichan, M. A. 1986a. Conductance in the wood of selected Carboniferous plants. Paleobiology, 12:302310.Google Scholar
Cichan, M. A. 1986b. Vascular cambium and wood development in Carboniferous plants. 3. Arthropitys (Equisetales, Calamitaceae). Canadian Journal of Botany-Revue Canadienne De Botanique, 64:688695.Google Scholar
Cichan, M. A. 1986c. Vascular cambium and wood development in Carboniferous plants. 4. Seed Plants. Botanical Gazette, 147:227235.CrossRefGoogle Scholar
Cichan, M. A., and Taylor, T. N. 1982. Vascular cambium development in Sphenophyllum, a Carboniferous arthrophyte. IAWA Bulletin, 3:155160.Google Scholar
Cleal, C. J., Laveine, J. P., and Shute, C. H. 1996. Architecture of the Upper Carboniferous pteridosperm frond Macroneuropteris macrophylla . Palaeontology, 39:561582.Google Scholar
Clearwater, M. J., and Clark, C. J. 2003. In vivo magnetic resonance imaging of xylem vessel contents in woody lianas. Plant, Cell & Environment, 26:12051214.Google Scholar
Clearwater, M. J., and Goldstein, G., 2005. Embolism repair and long distance water transport, p. 375401. In Holbrook, N. M. and Zweiniecki, M. A. (eds.), Vascular Transport in Plants. Elsevier Academic Press, Amsterdam.Google Scholar
Cochard, H., Froux, F., Mayr, F. F. S., and Coutand, C. 2004. Xylem wall collapse in water-stressed pine needles. Plant Physiology, 134:401408.Google Scholar
Cochard, H., Hoelttae, T., Herbette, S., Delzon, S., and Mencuccini, M. 2009. New insights into the mechanisms of water-stress-induced cavitation in conifers. Plant Physiology, 151:949954.Google Scholar
Comstock, J. P., and Sperry, J. S. 2000. Theoretical considerations of optimal conduit length for water transport in vascular plants. New Phytologist, 148:195218.Google Scholar
Côte, W. A. 1967. Wood Ultrastructure: An Atlas Of Electron Micrographs. University of Washington Press.Google Scholar
De Boer, H. J., Eppinga, M. B., Wassen, M. J., and Dekker, S. C. 2012. A critical transition in leaf evolution facilitated the Cretaceous angiosperm revolution. Nature Communications, 3:1221.Google Scholar
Decombeix, A.-L., Meyer-Berthaud, B., and Galtier, J. 2011a. Transitional changes in arborescent lignophytes at the Devonian–Carboniferous boundary. Journal of the Geological Society of London, 168:547557.Google Scholar
Decombeix, A.-L., Meyer-Berthaud, B., Galtier, J., Talent, J. A., and Mawson, R. 2011b. Arborescent lignophytes in the Tournaisian vegetation of Queensland (Australia): Palaeoecological and palaeogeographical significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 301:3955.Google Scholar
Decombeix, A. L., Meyer-Berthaud, B., Rowe, N., and Galtier, J. 2005. Diversity of large woody lignophytes preceding the extinction of Archaeopteris: New data from the middle Tournaisian of Thuringia (Germany). Review of Paleobotany and Palynology, 137:6982.Google Scholar
Delevoryas, T. 1955. The medullosae: structure and relationships. Palaeontographica B, 97:114167.Google Scholar
Delzon, S., Douthe, C., Sala, A., and Cochard, H. 2010. Mechanism of water-stress induced cavitation in conifers: bordered pit structure and function support the hypothesis of seal capillary-seeding. Plant Cell and Environment, 33:21012111.Google Scholar
Dixon, H. H. 1914. Transpiration and the Ascent of Sap in Plants. MacMillan and Co., London.Google Scholar
Dixon, H. H., and Joly, J. 1895. On the ascent of sap. Philosophical Transactions of the Royal Society B-Biological Sciences, 186:563576.Google Scholar
Domec, J.-C., Lachenbruch, B., and Meinzer, F. C. 2006. Bordered pit structure and function determine spatial patterns of air-seeding thresholds in xylem of Douglas Fir (Pseudotsuga menziesii; Pinaceae) trees. American Journal of Botany, 93:15881600.Google Scholar
Domec, J.-C., Lachenbruch, B., Meinzer, F. C., Woodruff, D. R., Warren, J. M., and McCulloh, K. A. 2008. Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences, 105:1206912074.Google Scholar
Domec, J.-C., Warren, J. M., Meinzer, F. C., and Lachenbruch, B. 2009. Safety factors for xylem failure by implosion and air-seeding within roots, trunks and branches of young and old conifer trees. IAWA Journal, 30:101120.Google Scholar
Edwards, D. 2003. Xylem in early tracheophytes. Plant Cell and Environment, 26:5772.Google Scholar
Feild, T. S., Chatelet, D. S., and Brodribb, T. J. 2009. Ancestral xerophobia: a hypothesis on the whole plant ecophysiology of early angiosperms. Geobiology, 7:237264.Google Scholar
Feild, T. S., and Wilson, J. P. 2012. Evolutionary voyage of angiosperm vessel structure-function and its significance for early angiosperm success. International Journal of Plant Sciences, 173:596609.Google Scholar
Fisher, J. B., Tan, H. T. W., and Toh, L. P. L. 2002. Xylem of rattans: vessel dimensions in climbing palms. American Journal of Botany, 89:196202.Google Scholar
Galtier, J. 1970. Recherches sur les vegetaux a structure conserve du Carbonifere inferieur francais. Paleobiologie Continental, 1:1221.Google Scholar
Galtier, J., and Meyer-Berthaud, B. 2006. The diversification of early arborescent seed ferns. Journal of the Torrey Botanical Society, 133:719.Google Scholar
Galtier, J., Meyer-Berthaud, B., and Beck, C. B. 1993. Large Calamopitys stems from the Tournaisian of France. Palaeontographica Abteilung B, 230:5979.Google Scholar
Giudice, G. E., Luna, M. L., Carrion, C., and De La Sota, E. R. 2008. Revision of the genus Salpichlaena J. Sm. (Blechnaceae, Pteridophyta). American Fern Journal, 98:4960.CrossRefGoogle Scholar
Glasspool, I., Hilton, J., Collinson, M. E., and Shi-Jun, W. 2004a. Defining the gigantopterid concept: a reinvestigation of Gigantopteris (Megalopteris) nicotianaefolia Schenck and its taxonomic implications. Palaeontology, 47:13391361.Google Scholar
Glasspool, I. J., Hilton, J., Collinson, M.E., Wang, S.-J., and Li Cheng, S. 2004b. Foliar physiognomy in Cathaysian gigantopterids and the potential to track Palaeozoic climates using an extinct plant group. Palaeogeography, Palaeoclimatology, Palaeoecology, 205:69110.Google Scholar
Graham, L. E., and Gray, J. 2001. The origin, morphology, and ecophysiology of early embryophytes: neontological and paleontological perspectives, p. 140159. In Gensel, P. G. and Edwards, D. (eds.), Plants Invade The Land: Evolutionary and Environmental Perspectives. Columbia University Press, New York.Google Scholar
Hacke, U. G., and Jansen, S. 2009. Embolism resistance of three boreal conifer species varies with pit structure. New Phytologist, 182:675686.Google Scholar
Hacke, U. G., and Sperry, J. S. 2001. Functional and ecological xylem anatomy. Perspectives in Plant Ecology Evolution and Systematics, 4:97115.Google Scholar
Hacke, U. G., Sperry, J. S., Feild, T. S., Sano, Y., Sikkema, E. H., and Pittermann, J. 2007. Water transport in vesselless angiosperms: conducting efficiency and cavitation safety. International Journal of Plant Sciences, 168:11131126.Google Scholar
Hacke, U. G., Sperry, J. S., and Pittermann, J. 2000. Drought experience and cavitation resistance in six shrubs from the Great Basin, Utah. Basic and Applied Ecology, 1:3141.Google Scholar
Hacke, U. G., Sperry, J. S., and Pittermann, J. 2004. Analysis of circular bordered pit function: II. Gymnosperm tracheids with torus-margo pit membranes. American Journal of Botany, 91:386400.Google Scholar
Hacke, U. G., Sperry, J. S., Pockman, W. T., Davis, S. D., and McCulloch, K. A. 2001a. Trends in wood density and structure are linked to prevention of xylem implosion by negative pressure. Oecologia, 126:457461.Google Scholar
Hacke, U. G., Sperry, J. S., Wheeler, J. K., and Castro, L. 2006. Scaling of angiosperm xylem structure with safety and efficiency. Tree Physiology, 26:689701.Google Scholar
Hacke, U. G., Stiller, V., Sperry, J. S., Pittermann, J., and McCulloh, K. A. 2001b. Cavitation fatigue. Embolism and refilling cycles can weaken the cavitation resistance of xylem. Plant Physiology, 125:779786.Google Scholar
Hartman, C. M., and Banks, H. P. 1980. Pitting in Psilophyton dawsonii, an Early Devonian trimerophyte. American Journal of Botany, 67:400412.Google Scholar
Holbrook, N. M., Ahrens, E. T., Burns, M. J., and Zwieniecki, M. A. 2001. In vivo observation of cavitation and embolism repair using magnetic resonance imaging. Plant Physiology, 126:2731.Google Scholar
Hurtt, G. C., Fisk, J., Thomas, R. Q., Dubayah, R., Moorcroft, P. R., and Shugart, H. H. 2010. Linking models and data on vegetation structure. Journal of Geophysical Research-Biogeosciences, 115:G00E10.Google Scholar
Ise, T., and Moorcroft, P. R. 2010. Simulating boreal forest dynamics from perspectives of ecophysiology, resource availability, and climate change. Ecological Research, 25:501511.Google Scholar
Jansen, S., Choat, B., and Pletsers, A. 2009. Morphological variation of intervessel pit membranes and implications to xylem function in angiosperms. American Journal of Botany, 96:409419.Google Scholar
Jansen, S., Sano, Y., Choat, B., Rabaey, D., Lens, F., and Dute, R. R. 2007. Pit membranes in tracheary elements of Rosaceae and related families: new records of tori and pseudotori. American Journal of Botany, 94:503514.Google Scholar
Johnson, D. M., Domec, J.-C., Woodruff, D. R., McCulloh, K. A., and Meinzer, F. C. 2013. Contrasting hydraulic strategies in two tropical lianas and their host trees. American Journal of Botany, 100:374383.Google Scholar
Kohn, M. J., and Thiemens, M. H. 2010. Carbon isotope compositions of terrestrial C3 plants as indicators of (paleo)ecology and (paleo)climate. Proceedings of the National Academy of Sciences of the United States of America, 107:1969119695.Google Scholar
Lancashire, J. R., and Ennos, A. R. 2002. Modelling the hydrodynamic resistance of bordered pits. Journal of Experimental Botany, 53:14851493.Google Scholar
Li, H., and Taylor, D. W. 1998. Aculeovinea yunguiensis gen. et sp. nov. (Gigantopteridales), a new taxon of gigantopterid stem from the Upper Permian of Guizhou Province, China. International Journal of Plant Sciences, 159:10231033.Google Scholar
Li, H., and Taylor, D. W. 1999. Vessel-bearing stems of Vasovinea tianii gen. et sp. nov. (Gigantopteridales) from the Upper Permian of Guizhou Province, China. American Journal of Botany, 86:15631575.Google Scholar
Li, H. Q., Taylor, E. L. and Taylor, T. N. 1996. Permian vessel elements. Science, 271:188189.Google Scholar
Luna, M. L., Giudice, G. E., and De La Sota, E. R. 2008. Observations on tracheary elements in Salpichlaena J. Sm. (Blechnaceae, Pteridophyta). American Fern Journal, 98:6170.Google Scholar
McAdam, S. A. M., and Brodribb, T. J. 2012. Stomatal innovation and the rise of seed plants. Ecology Letters, 15:18.Google Scholar
Medvigy, D., and Moorcroft, P. R. 2012. Predicting ecosystem dynamics at regional scales: an evaluation of a terrestrial biosphere model for the forests of northeastern North America. Philosophical Transactions of the Royal Society B-Biological Sciences, 367:222235.Google Scholar
Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., and Moorcroft, P. R. 2009. Mechanistic scaling of ecosystem function and dynamics in space and time: Ecosystem Demography model version 2. Journal of Geophysical Research-Biogeosciences, 114:G01002.Google Scholar
Medvigy, D., Wofsy, S. C., Munger, J. W., and Moorcroft, P. R. 2010. Responses of terrestrial ecosystems and carbon budgets to current and future environmental variability. Proceedings of the National Academy of Sciences of the United States of America, 107:82758280.Google Scholar
Meyer-Berthaud, B., Scheckler, S. E., and Bousquet, J.-L. 2000. The development of Archaeopteris: new evolutionary characters from the structural analysis of an Early Famennian trunk from southeast Morocco. American Journal of Botany, 87:456468.Google Scholar
Moorcroft, P. R., Hurtt, G. C., and Pacala, S. W. 2001. A method for scaling vegetation dynamics: The ecosystem demography model (ED). Ecological Monographs, 71:557585.CrossRefGoogle Scholar
Niklas, K. J. 1985. The evolution of tracheid diameter in early vascular plants and its implications on the hydraulic conductance of the primary xylem strand. Evolution, 39:11101122.Google Scholar
Niklas, K. J. 1994. Morphological evolution through complex domains of fitness. Proceedings of the National Academy of Sciences of the United States of America, 91:67726779.CrossRefGoogle ScholarPubMed
Niklas, K. J. 1997. The Evolutionary Biology of Plants. University of Chicago Press, Chicago.Google Scholar
Philippe, M., and Bamford, M. K. 2008. A key to morphogenera used for Mesozoic conifer-like woods. Review of Paleobotany and Palynology, 148:184207.Google Scholar
Philippe, M., Gomez, B., Girard, V., Coiffard, C., Daviero-Gomez, V., Thevenard, F., Billon-Bruyat, J.-P., Guiomar, M., Latil, J.-L., Le Loeuff, J., Néraudeau, D., Olivero, D., and Schlögl, J. 2008. Woody or not woody? Evidence for early angiosperm habit from the Early Cretaceous fossil wood record of Europe. Palaeoworld, 17:142152.Google Scholar
Pittermann, J. 2010. The evolution of water transport in plants: an integrated approach. Geobiology, 8:112139.CrossRefGoogle ScholarPubMed
Pittermann, J., Choat, B., Jansen, S., Stuart, S.A., Lynn, L., and Dawson, T. E. 2010. The relationships between xylem safety and hydraulic efficiency in the Cupressaceae: The evolution of pit membrane form and function. Plant Physiology, 153:19191931.Google Scholar
Pittermann, J., and Sperry, J. 2003. Tracheid diameter is the key trait determining the extent of freezing-induced embolism in conifers. Tree Physiology, 23:907914.Google Scholar
Pittermann, J., and Sperry, J. S. 2006. Analysis of freeze-thaw embolism in conifers. The interaction between cavitation pressure and tracheid size. Plant Physiology, 140:374382.CrossRefGoogle ScholarPubMed
Pittermann, J., Sperry, J. S., Hacke, U. G., Wheeler, J. K., and Sikkema, E. H. 2005. Torusmargo pits help conifers compete with angiosperms. Science, 310:19241924.Google Scholar
Pittermann, J., Sperry, J. S., Hacke, U. G., Wheeler, J. K., and Sikkema, E. H. 2006a. Intertracheid pitting and the hydraulic efficiency of conifer wood: the role of tracheid allometry and cavitation protection. American Journal of Botany, 93:12651273.Google Scholar
Pittermann, J., Sperry, J. S., Wheeler, J. K., Hacke, U. G., and Sikkema, E. H. 2006b. Mechanical reinforcement of tracheids compromises the hydraulic efficiency of conifer xylem. Plant Cell and Environment, 29:16181628.Google Scholar
Pockman, W. T., Sperry, J. S., and O'Leary, J. W. 1995. Sustained and significant negative water-pressure in xylem. Nature, 378:715716.Google Scholar
Rabaey, D., Lens, F., Smets, E., and Jansen, S. 2006. The micromorphology of pit membranes in tracheary elements of Ericales: new records of tori or pseudo-tori? Annals of Botany, 98:943951.Google Scholar
Raven, J. A., and Edwards, D. 2001. Roots: evolutionary origins and biogeochemical significance. Journal of Experimental Botany, 52:381401.Google Scholar
Rowe, N., Isnard, S., and Speck, T. 2004. Diversity of mechanical architectures in climbing plants: An evolutionary perspective. Journal of Plant Growth Regulation, 23:108128.CrossRefGoogle Scholar
Rowe, N. P., and Galtier, J. 1988. A large calamopityacean stem compression yielding anatomy from the Lower Carboniferous of France. Geobios, 21:109115.Google Scholar
Rowe, N. P., Speck, T., and Galtier, J. 1993. Biomechanical analysis of a paleozoic gymnosperm stem. Proceedings of the Royal Society of London Series B-Biological Sciences, 252:1928.Google Scholar
Royer, D. L. 2006. CO2-forced climate thresholds during the Phanerozoic. Geochimica Et Cosmochimica Acta, 70:56655675.CrossRefGoogle Scholar
Sano, Y., and Jansen, S. 2006. Perforated pit membranes in imperforate tracheary elements of some angiosperms. Annals of Botany, 97:10451053.Google Scholar
Scheckler, S. E. 1978. Ontogeny of progymnosperms, 2. Shoots of Upper Devonian Archaeopteridales. Canadian Journal of Botany-Revue Canadienne De Botanique, 56:31363170.Google Scholar
Secchi, F., and Zwieniecki, M. A. 2011. Sensing embolism in xylem vessels: the role of sucrose as a trigger for refilling. Plant, Cell & Environment, 34:514524.Google Scholar
Secchi, F., and Zwieniecki, M. A. 2012. Analysis of xylem sap from functional (nonembolized) and nonfunctional (embolized) vessels of Populus nigra: chemistry of refilling. Plant Physiology, 160:955964.Google Scholar
Speck, T., and Rowe, N. P. 1994. Biomechanical analysis of Pitus dayi: early seed plant vegetative morphology and its implications on growth habit. Journal of Plant Research, 107:443460.Google Scholar
Sperry, J. S. 1986. Relationship of xylem embolism to xylem pressure potential, stomatal closure, and shoot morphology in the palm Rhapis excelsa . Plant Physiology, 80:110116.Google Scholar
Sperry, J. S. 2003. Evolution of water transport and xylem structure. International Journal of Plant Sciences, 164:S115S127.Google Scholar
Sperry, J. S., and Hacke, U. G. 2004. Analysis of circular bordered pit function I. Angiosperm vessels with homogenous pit membranes. American Journal of Botany, 91:369385.Google Scholar
Sperry, J. S., Hacke, U. G., Feild, T. S., Sano, Y., and Sikkema, E. H. 2007. Hydraulic consequences of vessel evolution in angiosperms. International Journal of Plant Sciences, 168:11271139.Google Scholar
Sperry, J. S., Hacke, U. G., Oren, R., and Comstock, J. P. 2002. Water deficits and hydraulic limits to leaf water supply. Plant Cell and Environment, 25:251263.Google Scholar
Sperry, J. S., Hacke, U. G., and Pittermann, J. 2006. Size and function in conifer tracheids and angiosperm vessels. American Journal of Botany, 93:14901500.CrossRefGoogle ScholarPubMed
Sperry, J. S., Hacke, U. G., and Wheeler, J. K. 2005. Comparative analysis of end wall resistivity in xylem conduits. Plant Cell and Environment, 28:456465.Google Scholar
Sperry, J. S., Meinzer, F. C., and McCulloh, K. A. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment, 31:632645.Google Scholar
Sperry, J. S., Nichols, K. L., Sullivan, J. E. M., and Eastlack, S. E. 1994. Xylem embolism in ring-porous, diffuse-porous, and coniferous trees of northern Utah and interior Alaska. Ecology, 75:17361752.Google Scholar
Sperry, J. S., Saliendra, N. Z., Pockman, W. T., Cochard, H., Cruiziat, P., Davis, S. D., Ewers, F. W., and Tyree, M. T. 1996. New evidence for large negative xylem pressures and their measurement by the pressure chamber method. Plant Cell and Environment, 19:427436.Google Scholar
Sperry, J. S., and Sullivan, J. E. M. 1992. Xylem embolism in response to freeze-thaw cycles and water-stress in ring-porous, diffuse-porous, and conifer species. Plant Physiology, 100:605613.Google Scholar
Sperry, J. S., and Tyree, M. T. 1988. Mechanism of water stress-induced xylem embolism. Plant Physiology, 88:581587.Google Scholar
Sperry, J. S., and Tyree, M. T. 1990. Water-stress-induced xylem embolism in 3 species of conifers. Plant Cell and Environment, 13:427436.Google Scholar
Stull, G. W., Dimichele, W. A., Falcon-Lang, H. J., Nelson, W. J., and Elrick, S. 2012. Palaeoecology of Macroneuropteris scheuchzeri, and its implications for resolving the paradox of “xeromorphic” plants in Pennsylvanian wetlands. Palaeogeography, Palaeoclimatology, Palaeoecology, 331:162176.Google Scholar
Taiz, L., and Zeiger, E. 2002. Plant Physiology. Sinauer Associates, Inc, Sunderland, MA.Google Scholar
Taylor, T. N., Taylor, E. L., and Krings, M. 2008. Paleobotany: The Biology and Evolution of Fossil Plants. Academic Press, Burlington, MA.Google Scholar
Totzke, C., Miranda, T., Konrad, W., Gout, J., Kardjilov, N., Dawson, M., Manke, I., and Roth-Nebelsick, A. 2013. Visualization of embolism formation in the xylem of liana stems using neutron radiography. Annals of Botany, 111:723730.Google Scholar
Tyree, M. T., and Ewers, F. W. 1991. Tansley Review No. 34. The hydraulic architecture of trees and other woody plants. New Phytologist, 119:345360.CrossRefGoogle Scholar
Tyree, M. T., and Sperry, J. S. 1988. Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water-stress: answers from a model. Plant Physiology, 88:574580.Google Scholar
Tyree, M. T., and Sperry, J. S. 1989. Vulnerability of xylem to cavitation and embolism. Annual Review of Plant Physiology and Plant Molecular Biology, 40:1938.Google Scholar
Tyree, M. T., and Zimmermann, M. H. 2002. Xylem Structure and the Ascent of Sap. Springer-Verlag, Berlin.Google Scholar
Van Den Honert, T. H. 1948. Water transport in plants as a catenary process. Discussions of the Faraday Society, 3:146153.Google Scholar
Veres, J. S. 1990. Xylem anatomy and hydraulic conductance of Costa Rican Blechnum ferns. American Journal of Botany, 77:16101625.Google Scholar
Wagner, A., Donaldson, L., Kim, H., Phillips, L., Flint, H., Steward, D., Torr, K., Koch, G., Schmitt, U., and Ralph, J. 2009. Suppression of 4-coumarate-coa ligase in the coniferous gymnosperm Pinus radiata . Plant Physiology, 149:370383.Google Scholar
Wheeler, J. K., Sperry, J. S., Hacke, U. G., and Hoang, N. 2005. Inter-vessel pitting and cavitation in woody Rosaceae and other vesselled plants: a basis for a safety versus efficiency trade-off in xylem transport. Plant Cell and Environment, 28:800812.Google Scholar
Wheeler, T. D., and Stroock, A. D. 2008. The transpiration of water at negative pressures in a synthetic tree. Nature, 455:208212.Google Scholar
Wilson, J. P., and Fischer, W. W. 2011. Hydraulics of Asteroxylon mackei, an early Devonian vascular plant, and the early evolution of water transport tissue in terrestrial plants. Geobiology, 9:121130.CrossRefGoogle ScholarPubMed
Wilson, J. P., and Knoll, A. H. 2010. A physiologically explicit morphospace for tracheidbased water transport in modern and extinct seed plants. Paleobiology, 36:335355.Google Scholar
Wilson, J. P., Knoll, A. H., Holbrook, N. M., and Marshall, C. R. 2008. Modeling fluid flow in Medullosa, an anatomically unusual Carboniferous seed plant. Paleobiology, 34:472493.Google Scholar
Wnuk, C., and Pfefferkorn, H. W. 1984. The life habits and paleoecology of Middle Pennsylvanian medullosan pteridosperms based on an in situ assemblage from the Bernice Basin (Sullivan County, Pennsylvania, USA). Review of Paleobotany and Palynology, 41:329351.Google Scholar
Zimmermann, M. H. 1983. Xylem Structure and the Ascent of Sap. Springer- Verlag, Berlin.Google Scholar
Zodrow, E. L. 2003. Foliar forms of Macroneuropteris scheuchzeri (Pennsylvanian, Sydney Coalfield, Nova Scotia, Canada). Atlantic Geology, 39:2337.Google Scholar