Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T11:26:03.479Z Has data issue: false hasContentIssue false

Implications of research on living stalked crinoids for paleobiology

Published online by Cambridge University Press:  21 July 2017

David L. Meyer*
Affiliation:
Department of Geology, University of Cincinnati Cincinnati, Ohio 45221 USA
Get access

Abstract

Stalked crinoids (sea lilies) are not extinct, but are restricted to depths below 100 m and comprise over 80 living species. Over the past 20 years, a wide range of new information on the biology of stalked crinoids has been acquired from deep-sea photography and submersible studies. Taphonomic studies show that stalked crinoids can disarticulate and undergo breakage and abrasion without significant transportation, although crinoids can survive the rigors of transportation without damage if decay has not weakened connective tissues. Because stalks can remain articulated longer than crowns, the occurrence of articulated fossil crinoid stalks should not be interpreted as proof of rapid burial. Stalked crinoids are passive suspension feeders forming filtration fans oriented normal to bottom currents of low velocity. Mutable collagenous tissues comprising the ligaments of stalk, cirri, and arms are significant in providing variable stiffness that enables stalked crinoids to maintain elevation of the stalk and the filtration fan feeding posture. Regenerated arms and stalks lacking crowns suggest that stalked crinoids are subject to predation by fish in deep water, although predation pressure is likely lower than in shallow water.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography and References, Physiology, growth, and regeneration

Amemiya, S., and Oji, T. 1992. Regeneration in sea lilies. Nature, 357:546547.CrossRefGoogle Scholar
Baumiller, T. K., and LaBarbera, M. 1989. Metabolic rates of Caribbean crinoids (Echinodermata), with special reference to deep-water stalked and stalkless taxa. Comparative Biochemistry and Physiology, 93A:391394.CrossRefGoogle Scholar
Llewellyn, G., and Baumiller, T. K. 1993. Stem growth strategies for two western Atlantic isocrinid species. Geological Society of America Abstracts with Programs, 25(6):A104105.Google Scholar
Messing, C.G. 1994. In situ stalk growth and sediment production rates in a living stalked crinoid (Chladocrinus decorus) (Echinodermata). Geological Society of America Abstracts with Programs, 26(7):A428.Google Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia, 19:355360.CrossRefGoogle Scholar
Oji, T. 1989. Growth rate of stalk of Metacrinus rotundus (Echinodermata: Crinoidea) and its functional significance. Journal of the Faculty of Science University of Tokyo (II), 22:3951.Google Scholar

Taphonomy

Ameziane-Cominardi, N., and Roux, M. 1987. Biocorrosion et micritisation des ossicules d'Echinodermes en milieu bathyal au large de la Nouvelle-Calédonie. Compte Rendu de la Academie des Sciences, Paris, Serie II, 305:701705.Google Scholar
Baumiller, T. K. 1994. Implications of stress induced shedding of body parts in crinoids. Geological Society of America Abstracts with Programs, 26:428.Google Scholar
Baumiller, T. K. and Ausich, W. I. 1992. The broken-stick model as a null hypothesis for crinoid stalk taphonomy and as a guide to the distribution of connective tissue in fossils. Paleobiology, 18:288298.CrossRefGoogle Scholar
Baumiller, T. K., Llewellyn, G., Messing, C. G., and Ausich, W. I. 1995. Taphonomy of isocrinid stalks: influence of decay and autotomy. Palaios, 10:8795.CrossRefGoogle Scholar
Dodd, J. R., Savarese, M., Lane, N. G., Leighton, L. R., Surge, D., Sands, R., and Bonfair, T. 1994. Crinoid columnal porosity: taphonomic, hydrodynamic, and diagenetic implications. Geological Society of America Abstracts with Programs, 26(7):A59.Google Scholar
Dodd, J. R., Savarese, M., Hagstrom, K., Kris, A., and Nell, K. 1995. Taphonomic implications of hydrodynamic behavior of crinoid columnals as determined by settling and entrainment experiments with modern specimens and plastic models. Geological Society of America Abstracts with Programs, 27(6):A135.Google Scholar
Donovan, S. K. 1991. The taphonomy of echinoderms: calcareous multi-element skeletons in the marine environment, p. 241269. In Donovan, S. K. (ed.), The Processes of Fossilization. Columbia University Press, New York.Google Scholar
Laudon, L R. 1957. Crinoids, p. 961972. In Ladd, H. S. (ed.), Treatise on Marine Ecology and Paleoecology, Volume 2. Geological Society of America, Memoir 67.CrossRefGoogle Scholar
Lawrence, J. M. 1996. Mass mortality of echinoderms from abiotic factors, p. 103137. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies Volume 5. A. A. Balkema, Rotterdam.Google Scholar
Llewellyn, G., and Messing, C. G. 1993. Compositional and taphonomic variations in modern crinoid-rich sediments from the deep-water margin of a carbonate bank. Palaios, 8:554573.CrossRefGoogle Scholar
Messing, C.G., and Llewelllyn, G. 1992. Variations in post-mortem disarticulation and sediment production in two species of Recent stalked crinoids. Geological Society of America Abstracts with Programs, 24(7):A344.Google Scholar
Messing, C.G., and Rankin, D. 1995. Local variations in skeletal contribution to sediment by a modern stalked crinoid (Chladocrinus decorus) (Echinodermata) relative to distribution of a living population. Geological Society of America Abstracts with Programs, 27(6):A136.Google Scholar
Meyer, D. L., and Meyer, K. B. 1986. Biostratinomy of Recent crinoids (Echinodermata) at Lizard Island, Great Barrier Reef, Australia. Palaios, 1:294301.CrossRefGoogle Scholar
Meyer, D. L., and Oji, T. 1992. Experimental taphonomy of a Recent stalked crinoid: implications for the crinoid fossil record. Geological Society of America Abstracts with Programs, 24:55.Google Scholar

Environments

Conan, G., Rowe, M., and Sibuet, M. 1981. A photographic survey of a population of the stalked crinoid Diplocrinus (Annacrinus) wyville-thomsoni (Echinodermata) from the bathyal slope of the Bay of Biscay. Deep-Sea Research, 28:411454.CrossRefGoogle Scholar
Fujita, T., Ohta, S., and Oji, T. 1987. Photographic observations of the stalked crinoid Metacrinus rotundus (Carpenter) in Suruga Bay, central Japan. Journal of the Oceanographical Society of Japan, 43:333343.CrossRefGoogle Scholar
Horikoshi, M., Fujita, T., and Ohta, S. 1990. Benthic associations in bathyal and hadal depths off the Pacific coast of north eastern Japan: physiognomies and site factors. Progress in Oceanography, 24: 331339.CrossRefGoogle Scholar
Kulm, L. D., and Suess, E. 1987. Fluid venting structures on the Oregon continental shelf. Eos, 68:1487.Google Scholar
Messing, C. G. 1985. Submersible observations of deep-water crinoid assemblages in the tropical western Atlantic Ocean, p. 185193. In Keegan, B. F. and O'Connor, B. D. S. (Eds.), Fifth International Echinoderm Conference, Galway, Ireland. A. A. Balkema, Rotterdam.Google Scholar
Messing, C. G., Neumann, A. C., and Lang, J. C. 1990. Biozonation of deep-water lithoherms and associated hardgrounds in the northeastern Straits of Florida. Palaios, 5:1533.CrossRefGoogle Scholar
Roux, M. 1988. Les lys de mer, temoins de l'Evolution. Pour la Science, 7888.Google Scholar
Roux, M. 1994. The CALSUB cruise on the bathyal slopes off New Caledonia, p. 947. In Crosnier, A. (ed.), Resultats des Campagnes Musorstom, Vol. 12. Mémoir du Musee national d'Histoire naturelle (A), 161.Google Scholar

Functional morphology and behavior

Baumiller, T. K. 1992. Importance of hydrodynamic lift to crinoid autecology, or, could crinoids function as kites? Journal of Paleontology, 66:658665.CrossRefGoogle Scholar
Baumiller, T. K. 1993. Crinoid stalks as cantilever beams and the nature of stalk ligament. Neues Jahrbuch für Geologie und Palaontologie, Abhandlungen, 190:279297.Google Scholar
Baumiller, T. K. and LaBarbera, M. 1993. Mechanical properties of the stalk and cirri of the sea lily Cenocrinus asterius . Comparative Biochemistry and Physiology, 106A:9195.CrossRefGoogle Scholar
Baumiller, T. K., LaBarbera, M., and Woodley, J. D. 1991. Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science, 48:731748.Google Scholar
Birenheide, R., and Motokawa, T. 1994. Morphological basis and mechanics of arm movement of the stalked crinoid Metacrinus rotundus (Echinodermata, Crinoidea). Marine Biology, 121:273283.CrossRefGoogle Scholar
Birenheide, R., and Motokawa, T. 1996. Contractile connective tissue in crinoids. Biological Bulletin, 191:14.CrossRefGoogle ScholarPubMed
Breimer, A. 1978. General morphology, p. T9T58. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar
Breimer, A., and Webster, G. D. 1975. A further contribution to the paleoecology of stalked crinoids. Koninklijke Nederlandse Akademie van Wetenschappen Proceedings, Series B, 78:149167.Google Scholar
Donovan, S. K. 1984. Stem morphology of the Recent crinoid Chladocrinus (Neocrinus) decorus. Palaeontology, 27:825842.Google Scholar
Donovan, S. K. 1988. Functional morphology of synarthrial articulations in the crinoid stem. Lethaia, 21:69175.CrossRefGoogle Scholar
Donovan, S. K. 1989. The improbability of a muscular crinoid column. Lethaia, 22:307315.CrossRefGoogle Scholar
Donovan, S. K. 1990. Functional morphology of synostosial articulations in the crinoid column. Lethaia, 23:291296.CrossRefGoogle Scholar
Donovan, S. K. 1992. Scanning EM study of the living cyrtocrinid Holopus rangii (Echinodermata, Crinoidea) and implications for its functional morphology. Journal of Paleontology, 66:665675.CrossRefGoogle Scholar
Donovan, S. K. 1993. Contractile tissues in the cirri of ancient crinoids: criteria for recognition. Lethaia, 26:163168.CrossRefGoogle Scholar
Donovan, S. K., and Pawson, D. L. 1994. Skeletal morphology and paleontological significance of the stem of extant Phrynocrinus nudus A. H. Clark (Echinodermata: Crinoidea). Journal of Paleontology, 68:13361343.CrossRefGoogle Scholar
Grimmer, J., and Holland, N. D. 1990. The structure of a sessile stalkless crinoid (Holopus rangii). Acta Zoologica, 71:6167.CrossRefGoogle Scholar
Grimmer, J., Holland, N. D., and Hayami, A. 1985. Fine structure of the stalk of an isocrinid sea lily (Metacrinus rotundas). Zoomorphology, 105:3950.CrossRefGoogle Scholar
Grimmer, J., Holland, N. D., and Messing, C. G. 1984. Fine structure of the stalk of the bourgueticrinind sea lily Democrinus conifer (Echinodermata: Crinoidea). Marine Biology, 81:163176.CrossRefGoogle Scholar
Heinzeller, T., and Fechter, H. 1995. Microscopical anatomy of the cyrtocrinid Cyathidium meteorensis (sive foresti) (Echinodermata Crinoidea). Acta Zoologica, 76:2534.CrossRefGoogle Scholar
Heinzeller, T., and Welsch, U. 1994. Crinoidea, p. 9148. In Harrison, F. W. and Chia, F.-S. (eds.), Microscopic Anatomy of Invertebrates, Volume 14, Echinodermata. Wiley-Liss, New York.Google Scholar
Holland, N. D., Grimmer, J. C., and Wiegmann, K. 1991. The structure of the sea lily Calamocrinus diomedae, with special reference to the articulations, skeletal microstructure, symbiotic bacteria, axial organs, and stalk tissues (Crinoidea, Millericrinida). Zoomorphology, 110:115132.CrossRefGoogle Scholar
Macurda, D. B. Jr., and Meyer, D. L. 1974. Feeding posture of modern stalked crinoids. Nature, 247:394396.CrossRefGoogle Scholar
Messing, C. G. 1993. Depth, current flow and morphological variations among living crinoids. Geological Society of America Abstracts with Programs, 25(6):A104.Google Scholar
Messing, C. G. 1994. Crinoid meadows of the West Indies: distribution, responses to flow, disarticulation, sediment production and taphonomy, p. 245. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam, 940 p.Google Scholar
Messing, C. G., and Llewellyn, G. 1991. Variations in posture, morphology and distribution relative to current flow and topography in an assemblage of living stalked crinoids. Geological Society of America Abstracts with Programs, 23(5):A343344.Google Scholar
Messing, C. G., Rosesmyth, M. C., Mailer, S. R., and Miller, J. E. 1988. Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science, 42:480487.Google Scholar
Motokawa, T. 1984. Connective tissue catch in echinoderms. Biological Reviews, 59:255270.CrossRefGoogle Scholar
Rosenkrantz, K. J., and Baumiller, T. K. 1994. Mutable properties of crinoid stalk ligaments: functional and evolutionary implications. Geological Society of America Abstracts with Programs, 26:A59.Google Scholar
Roux, M. 1978. Ontogenèse, variabilité et évolution morphofonctionelle du pédoncule et du calice chez les Millericrinida (Echinodermes, Crinoïdes). Géobios, 11:213241.CrossRefGoogle Scholar
Wilkie, I. C., and Emson, R. H. 1988. Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny, p. 311330. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm phylogeny and evolutionary biology. Clarendon: Oxford.Google Scholar
Wilkie, I. C., Emson, R. H., and Young, C. M. 1993. Smart collagen in sea lilies. Nature, 366:519520.CrossRefGoogle Scholar
Young, C. M., and Emson, R. H. 1995. Rapid arm movements in stalked crinoids. Biological Bulletin, 188:8997.CrossRefGoogle ScholarPubMed

Predation

Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology, 11:154164.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology, 3:7482.CrossRefGoogle Scholar
Oji, T. 1996. Is predation intensity reduced with increasing depth? Evidence from the west Atlantic stalked crinoid Endoxocrinus parrae (Gervais) and implications for the Mesozoic marine revolution. Paleobiology, 22:339351.CrossRefGoogle Scholar
Oji, T., and Okamoto, T. 1994. Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids. Paleobiology, 20:2739.CrossRefGoogle Scholar

Taxonomy

Bourseau, J.-P., Ameziane-Cominardi, N., and Roux, M. 1987. Un Crinoïde pédonculé nouveau (Echinodermes), représentant actuel de la famille jurassique des Hemicrinidae: Gymnocrinus richeri nov. sp. des fonds bathyaux de Nouvelle-Calédonie (S.W. Pacifique). Comptes Rendu de la Academie des Sciences, Paris, 305:595599.Google Scholar
Carpenter, P.H. 1884. Report on the Crinoidea collected during the Voyage of H. M. S. “Challenger” during the years 1874–1876. The stalked crinoids. Report of the Scientific Results of the Voyage of the “Challenger,” 11, 442 p.Google Scholar
Clark, A. M. 1982. Inter-relationships of Recent stalked, non-isocrinid Crinoidea. Australian Museum Memoir, 16:121128.CrossRefGoogle Scholar
Hagdorn, H., and Campbell, H. J. 1993. Paracomatula triadica sp. nov.—an early comatulid crinoid from the Otapirian (Late Triassic) of New Caledonia. Alcheringa, 17:117.CrossRefGoogle Scholar
Heinzeller, T., Fricke, H., Bourseau, J.-P., Ameziane-Cominardi, N., and Welsch, U. 1996. Cyathidum plantei sp. n., an extant cyrtocrinid (Echinodermata, Crinoidea)—morphologically identical to the fossil Cyathidium depressum (Cretaceous, Cenomanian). Zoologica Scripta 25:7784.CrossRefGoogle Scholar
Messing, C. G., and Dearborn, J. H. 1990. Marine flora and fauna of the northeastern United States, Echinodermata: Crinoidea. NOAA Technical Report NMFS 91.Google Scholar
Roux, M. 1985. Découverte d'un représentant actuel des crinoïdes pédonculés paléozoïques Inadunata (Echinodermes) dans l'étage bathyal de l'Ille de la Réunion (Ocean Indien). Comptes Rendu de la Academie des Sciences, Paris, 301:503506.Google Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids, p. 269284. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Simms, M. J., and Sevastopulo, G. D. 1993. The origin of articulate crinoids. Palaeontology, 36:91109.Google Scholar
Ubaghs, G. 1978. Classification of the echinoderms, p. T359T371. In Moore, R. C. and Teichert, C. (eds.), Treatise on Invertebrate Paleontology, Part T, Echinodermata 2. Geological Society of America and University of Kansas Press, Lawrence, Kansas.Google Scholar

Biogeography

Ameziane, N. 1997. Echinodermata Crinoidea: Les Pentacrines recoltees lors de la campagne KARUBAR en Indonesie, p. 627667. In Crosnier, A. and Bouchet, P. (eds.), Resultats des Campagnes MUSORSTOM, Volume 16. Memoires du Museum National d'Histoire Naturelle, 172:627–667.Google Scholar
Ameziane-Cominardi, N., Bourseau, J.-P., and Avocat, R. 1990. Les crinoïdes pédonculés de Nouvelle-Calédonie: inventaire et réflexions sur les taxons archaïques, p. 117124. In de Ridder, C., Dubois, P., Lahaye, M.-C., and Jangoux, M. (eds.), Echinoderm Research. A. A. Balkema, Rotterdam.Google Scholar
Ameziane-Cominardi, N., Bourseau, J.-P., and Roux, M. 1987. Les crinoïdes pédonculés de Nouvelle-Calédonie (S.W. Pacifique): une faune bathyale ancestrale issue de la Mésogée mésozoïque. Comptes Rendu de la Academie des Sciences, Paris, 304:1518.Google Scholar
Ameziane-Cominardi, N., Bourseau, J.-P., and Roux, M. 1991. Les crinoïdes pédonculés de l'ouest Pacifique: un modele zoobathymetrique pour l'analyse des calcaires a entroques et du tectono-eustaisme au Jurassique. Documents et Travaux IGAL, 15:182198.Google Scholar
Bourseau, J.-P., Ameziani-Cominardi, N., Avocat, R., and Roux, M., (Eds.). (1991). Echinodermata: Les Crinoïdes pédonculés de Nouvelle-Calédonie, p. 229333. In Crosnier, A. (ed.), Resultats des Campagnes Musorstom, Vol. 8. Memoir du Musee national d'Histoire naturelle (A), 151.Google Scholar
Bourseau, J.-P., Cominardi, N., and Roux, M. 1988. La zonation bathymétrique des Crinoïdes pédonculés actuels: un modèle de réferénce pour les reconstitutions paléobathymétriques. Geologie Méditerranéenne, 15:8389.CrossRefGoogle Scholar
Oji, T. 1989. Distribution of the stalked crinoids from Japanese and nearby waters, p. 2743. In Ohba, H., Hayami, I., and Mochizuki, K. (eds.), Current Aspects of Biogeography in West Pacific and East Asian Regions. The University Museum, University of Tokyo, Tokyo.Google Scholar
Roux, M. 1980. Les Crinoïdes pédonculés (Echinodermes) photographies sur les dorsales oceaniques d l'Atlanique et du Pacifique: Implications biogeographiques. Comptes Rendu de la Academie des Sciences, Paris, 291:901904.Google Scholar
Roux, M. 1985. Les Crinoïdes pédonculés (Echinodermes) de l'Atlantique N. E.: inventaire, écologie et biogéographie, p. 479489. In Laubier, L. and Monniot, C. (eds.), Peuplements profonds du golfe de Gascogne. IFREMER, 630 p.Google Scholar
Roux, M. 1987a. Macroevolution du benthos oceanique, tectonique globale et rotation de la Terre. Bulletin de la Societé geologique de France, 3:425430.CrossRefGoogle Scholar
Roux, M. 1987b. Evolutionary ecology and biogeography of recent stalked crinoids as a model for the fossil record, p. 153. In Jangoux, M. and Lawrence, J. M. (eds.), Echinoderm Studies, Volume 2. A. A. Balkema, Rotterdam.Google Scholar