Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T06:06:26.492Z Has data issue: false hasContentIssue false

Exceptional Fossil Conservation through Phosphatization

Published online by Cambridge University Press:  21 July 2017

James D. Schiffbauer
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
Adam F. Wallace
Affiliation:
Department of Geological Sciences, University of Delaware, Newark, Delaware 19716, USA
Jesse Broce
Affiliation:
Department of Geological Sciences, University of Missouri, Columbia, Missouri 65211, USA
Shuhai Xiao
Affiliation:
Department of Geosciences, Virginia Tech, Blacksburg, Virginia 24061, USA
Get access

Abstract

This paper addresses the taphonomic processes responsible for fossil preservation in calcium phosphate, or phosphatization. Aside from silicification and rarer examples of carbonaceous compression, phosphatization is the only taphonomic mode claimed to preserve putative subcellular structures. Because this fossilization window can record such valuable information, a comprehensive understanding of its patterns of occurrence and the geochemical processes involved in the replication of soft tissues are critical endeavors. Fossil phosphatization was most abundant during the latest Neoproterozoic through the early Paleozoic, coinciding with the decline of non-pelletal phosphorite deposits. Its temporal abundance during this timeframe makes it a particularly valuable window for the study of early animal evolution. Several occurrences of phosphatization from the Ediacaran through the Permian Period, including Doushantuo-type preservation of embryo-like fossils and acritarchs, phosphatized gut tracts within Burgess Shale-type carbonaceous compressions, Orsten-type preservation of meiofaunas, and other cases from the later Paleozoic are reviewed. In addition, a comprehensive description of the geochemical controls of calcium phosphate precipitation from seawater is provided, with a focus on the rates of phosphate nucleation and growth, favorable nucleation substrates, and properties of substrate tissue and pore-fluid chemistry. It is hoped that the paleontological and geochemical summaries provided here offer a practical and valuable guide to the Neoproterozoic–Paleozoic phosphatization window.

Type
Research Article
Copyright
Copyright © 2014 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allison, P. A. 1988. Konservat-Lagerstätten: cause and classification. Paleobiology, 14:331344.Google Scholar
Allison, P. A., and Brett, C. E. 1995. In situ benthos and paleo-oxygenation in the Middle Cambrian Burgess Shale, British Columbia, Canada. Geology, 23:10791082.Google Scholar
Allison, P. A., and Briggs, D. E. G. 1991. Taphonomy of nonmineralized tissues, p. 2530. In Allison, P. A. and Briggs, D. E. G. (eds.), Taphonomy: Releasing the Data Locked in the Fossil Record. Plenum Press, New York.Google Scholar
Allison, P. A., and Briggs, D. E. G. 1993. Exceptional fossils record: Distribution of soft-tissue preservation through the Phanerozoic. Geology, 21:527530.Google Scholar
Bailey, J. V., Corsetti, F. A., Greene, S. E., Crosby, C. H., Liu, P., and Orphan, V. J. 2013. Filamentous sulfur bacteria preserved in modern and ancient phosphatic sediments: implications for the role of oxygen and bacteria in phosphogenesis. Geobiology, 11:397405.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007a. Evidence of giant sulphur bacteria in Neoproterozoic phosphorites. Nature, 445:198201.Google Scholar
Bailey, J. V., Joye, S. B., Kalanetra, K. M., Flood, B. E., and Corsetti, F. A. 2007b. Undressing and redressing Ediacaran embryos. Nature, 446:E1011.Google Scholar
Bengtson, S., Cunningham, J. A., Yin, C., and Donoghue, P. C. J. 2012. A merciful death for the “earliest bilaterian,” Vernanimalcula . Evolution & Development, 14:421427.Google Scholar
Bengtson, S., and Zhao, Y. 1997. Fossilized metazoan embryos from the earliest Cambrian. Science, 277:16451648.CrossRefGoogle Scholar
Berg-Madsen, V. 1989. The origin and usage of the terms orsten, stinkstone, and anthraconite. Archives of Natural History, 16:191208.Google Scholar
Berner, R. A. 1984. Sedimentary pyrite formation: an update. Geochimica et Cosmochimica Acta, 48:605615.Google Scholar
Bottjer, D. J., Hagadorn, J. W., and Dornbos, S. Q. 2000. The Cambrian substrate revolution. GSA Today, 10(9):17.Google Scholar
Brennan, S. T., Lowenstein, T. K., and Horita, J. 2004. Seawater chemistry and the advent of biocalcification. Geology, 32:473476.Google Scholar
Brett, C. E., Allison, P. A., DeSantis, M. K., Liddell, W. D., and Kramer, A. 2009. Sequence stratigraphy, cyclic facies, and Lagerstätten in the Middle Cambrian Wheeler and Marjum Formations, Great Basin, Utah. Palaeogeography, Palaeoclimatology, Palaeoecology, 277:933.Google Scholar
Briggs, D. E. G. 2003. The role of decay and mineralization in the preservation of soft-bodied fossils. Annual Review of Earth and Planetary Sciences, 31:275301. doi: 10.1146/annurev.earth.31.100901.144746 Google Scholar
Briggs, D. E. G. 2014. Konservat-Lagerstätten 40 years on: the exceptional becomes mainstream. p. 113. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Briggs, D. E. G., Erwin, D. H., and Collier, F. J. 1994. The Fossils of the Burgess Shale. Smithsonian Institution Press, Washington, D.C. Google Scholar
Briggs, D. E. G., and Kear, A. J. 1994. Decay and mineralization of shrimps. PALAIOS, 9:431456.Google Scholar
Briggs, D. E. G., and Wilby, P. R. 1996. The role of calcium carbonate-calcium phosphate switch in the mineralization of soft-bodied fossils. Journal of the Geological Society of London, 153:665668.Google Scholar
Broce, J., Schiffbauer, J. D., Sen Sharma, K., Wang, G., and Xiao, S. 2014. Possible animal embryos from the Lower Cambrian (Stage 3) Shuijingtuo Formation, Hubei Province, South China. Journal of Paleontology, 88:385394.Google Scholar
Butterfield, N. J. 2002. Leanchoilia guts and the interpretation of three-dimensional structures in Burgess Shale-type fossils. Paleobiology, 28:155171.2.0.CO;2>CrossRefGoogle Scholar
Butterfield, N. J. 2003. Exceptional fossil preservation and the Cambrian Explosion. Integrative and Comparative Biology, 43:166177.Google Scholar
Chen, J.-Y., Bottjer, D. J., Oliveri, P., Dornbos, S. Q., Gao, F., Ruffins, S., Chi, H., Li, C.-W., and Davidson, E. H. 2004. Small bilaterian fossils from 40 to 55 million years before the Cambrian. Science, 305:218222.Google Scholar
Chen, J.-Y., Bottjer, D. J., Davidson, E. H., Dornbos, S. Q., Gao, X., Yang, Y.-H., Li, C.-W., Li, G., Wang, X.-Q., Xian, D.-C., Wu, H.-J., Hwu, Y.-K., and Tafforeau, P. 2006. Phosphatized polar lobe-forming embryos from the Precambrian of southwest China. Science, 312:16441646.Google Scholar
Chen, J.-Y., Bottjer, D. J., Davidson, E. H., Li, G., Gao, F., Cameron, R. A., Hadfield, M. G., Xian, D.-C., Tafforeau, P., Jia, Q.-J., Sugiyama, H., and Tang, R. 2009a. Phase contrast synchrotron X-ray microtomography of Ediacaran (Doushantuo) metazoan microfossils: Phylogenetic diversity and evolutionary implications. Precambrian Research, 173:191200.Google Scholar
Chen, J.-Y., Bottjer, D. J., Li, G., Hadfield, M. G., Gao, F., Cameron, A. R., Zhang, C.-Y., Xian, D.-C., Tafforeau, P., Liao, X., and Yin, Z.-J. 2009b. Complex embryos displaying bilaterian characters from Precambrian Doushantuo phosphate deposits, Weng'an, Guizhou, China. Proceedings of the National Academy of Sciences of the United States of America, 106:1905619060.Google Scholar
Chen, J.-Y., and Chi, H. 2005. Precambrian phosphatized embryos and larvae from the Doushantuo Formation and their affinities, Guizhou (SW China). Chinese Science Bulletin, 50:21932200.Google Scholar
Chen, L., Xiao, S., Pang, K., Zhou, C., and Yuan, X. 2014 (in press). Cell differentiation and germ-soma separation in Ediacaran animal embryo-like fossils. Nature.Google Scholar
Cohen, K. M., Finney, S. C., Gibbard, P. L., and Fan, J.-X. 2013. The ICS International Chronostratigraphic Chart. Episodes, 36:199204.Google Scholar
Conway Morris, S., and Whittington, H. B. 1985. Fossils of the Burgess Shale: a national treasure in Yoho National Park, British Columbia. Geological Survey of Canada Miscellaneous Reports, 43:131.Google Scholar
Cook, P. J. 1990. Phosphogenesis around the Proterozoic–Phanerozoic transition. Journal of the Geological Society of London, 149:615620.Google Scholar
Cook, P. J., and McElhinny, M. W. 1979. A reevaluation of the spatial and temporal distribution of sedimentary phosphate deposits in the light of plate tectonics. Economic Geology, 74:315330.Google Scholar
Cook, P. J., and Shergold, J. H. 1986. Proterozoic and Cambrian phosphorites—nature and origin, p. 369386. In Cook, P. J. and Shergold, J. H. (eds.), Phosphate Deposits of the World, Volume 1, Proterozoic and Cambrian Phosphorites. Cambridge University Press, Cambridge.Google Scholar
Creveling, J. R., Johnston, D. T., Poulton, S. W., Kotrc, B., März, C., Schrag, D. P., and Knoll, A. H. 2014. Phosphorus sources for phosphatic Cambrian carbonates. Geological Society of America Bulletin, 126:145163.Google Scholar
Crosby, C. H., and Bailey, J. V. 2012. The role of microbes in the formation of modern and ancient phosphatic mineral deposits. Frontiers in Microbiology, 3:241.Google Scholar
Cunningham, J. A., Thomas, C.-W., Bengtson, S., Kearns, S.L., Xiao, S., Marone, F., Stampanoni, M., and Donoghue, P. C. J. 2012a. Distinguishing geology from biology in the Ediacaran Doushantuo biota relaxes constraints on the timing of the origin of bilaterians. Proceedings of the Royal Society B-Biological Sciences, 279:23692376.Google Scholar
Cunningham, J. A., Donoghue, P. C. J., and Bengtson, S. 2014. Distinguishing biology from geology in soft-tissue preservation, p. 275287. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Cunningham, J. A., Thomas, C.-W., Bengtson, S., Marone, F., Stampanoni, M., Turner, F. R., Bailey, J. V., Raff, R. A., Raff, E. C., and Donoghue, P. C. J. 2012b. Experimental taphonomy of giant sulphur bacteria: implications for the interpretation of the embryo-like Ediacaran Doushantuo fossils. Proceedings of the Royal Society B-Biological Sciences, 279:18571864.Google Scholar
De Yoreo, J. J., and Vekilov, P. G. 2003. Principles of crystal nucleation and growth. Reviews in Mineralogy and Geochemistry, 54:5793.Google Scholar
Devaere, L., Clausen, S., Alvaro, J. J., Peel, J. S., and Vachard, D. 2014. Terreneuvian orthothecid (Hyolitha) digestive tracts from northern Montagne Noire, France: taphonomic, ontogenetic and phylogenetic implications. PLoS ONE, 9:e88583.Google Scholar
Dong, X.-P., Bengtson, S., Gostling, N. J., Cunningham, J. A., Harvey, T. H. P., Kouchinsky, A., Val'kov, A., Repetski, J. E., Stampanoni, M., Marone, F., and Donoghue, P. C. J. 2010. The anatomy, taphonomy, taxonomy and systematic affinity of Markuelia: Early Cambrian to Early Ordovician scalidophorans. Palaeontology, 53:12911314.Google Scholar
Dong, X.-P., Cunningham, J. A., Bengtson, S., Thomas, C.-W., Liu, J., Stampanoni, M., and Donoghue, P. C. J. 2013. Embryos, polyps and medusae of the Early Cambrian scyphozoan Olivooides . Proceedings of the Royal Society B-Biological Sciences, 280:20130071.Google Scholar
Dong, X.-P., Donoghue, P. C. J., Cheng, H., and Liu, J.-B. 2004. Fossil embryos from the Middle and Late Cambrian period of Hunan, South China. Nature, 427:237240.Google Scholar
Dong, X.-P., Donoghue, P. C. J., Cunningham, J. A., Liu, J.-B., and Cheng, H. 2005. The anatomy, affinity and phylogenetic significance of Markuelia . Evolution & Development, 7:468482.Google Scholar
Donoghue, P. C. J., Kouchinsky, A., Waloszek, D., Bengtson, S., Dong, X.-P., Val'kov, A. K., Cunningham, J. A., and Repetski, J. E. 2006. Fossilized embryos are widespread but the record is temporally and taxonomically biased. Evolution & Development, 8:232238.Google Scholar
Dornbos, S. Q. 2011. Phosphatization through the Phanerozoic, p. 435456. In Allison, P. A. and Bottjer, D. J. (eds.), Taphonomy: Process and Bias Through Time. Topics in Geobiology. Springer.Google Scholar
Dornbos, S. Q., Bottjer, D. J., Chen, J.-Y., Oliveri, P., Gao, F., and Li, C.-W. 2005. Precambrian animal life: Taphonomy of phosphatized metazoan embryos from southwest China. Lethaia, 38:101109.Google Scholar
Dornbos, S. Q., Bottjer, D. J., Chen, J. Y., Gao, F., Oliveri, P., and Li, C. W. 2006. Environmental controls on the taphonomy of phosphatized animals and animal embryos from the Neoproterozoic Doushantuo Formation, southwest China. PALAIOS, 21:314.Google Scholar
Droser, M. L., and Bottjer, D. J. 1988. Trends in depth and extent of bioturbation in Cambrian carbonate marine environments, western United States. Geology, 16:233236.Google Scholar
Droser, M. L., and Bottjer, D. J. 1989. Ordovician increase in extent and depth of bioturbation: implications for understanding early Paleozoic ecospace utilization. Geology, 17:850852.Google Scholar
Filippelli, G. M. 2008. The global phosphorus cycle: past, present, and future. Elements, 4:8995.Google Scholar
Gaillard, J.-F., Pauwels, H., and Michard, G. 1989. Chemical diagenesis in coastal marine sediments. Oceanologica Acta, 12:175187.Google Scholar
Gaines, R. R. 2014. Burgess Shale-type preservation and its distribution in space and time, p. 123146. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Gaines, R. R., Droser, M. L., Orr, P. J., Garson, D., Hammarlund, E., Qi, C., and Canfield, D. E. 2012a. Burgess shale-type biotas were not entirely burrowed away. Geology, 40:283286.Google Scholar
Gaines, R. R., Hammarlund, E. U., Hou, X., Qi, C., Gabbott, S. E., Zhao, Y., Peng, J., and Canfield, D. E. 2012b. Mechanism for Burgess Shale-type preservation. Proceedings of the National Academy of Sciences of the United States of America, 109:51805184.Google Scholar
Giuffre, A. J., Hamm, L. M., Han, N., De Yoreo, J. J., and Dove, P. M. 2013. Polysaccharide chemistry regulates kinetics of calcite nucleation through competition of interfacial energies. Proceedings of the National Academy of Sciences of the United States of America, 110:92619266.Google Scholar
Gould, S. J. 1989. Wonderful Life: The Burgess Shale and the Nature of History. Norton, New York.Google Scholar
Gould, S. J. 1998. On embryos and ancestors. Natural History, 107:2022, 58–65.Google Scholar
Grotzinger, J. P., and Kasting, J. F. 1993. New constraints on Precambrian ocean composition. Journal of Geology, 101:235243.Google Scholar
Habraken, W. J. E. M., Tao, J., Brylka, L. J., Friedrich, L., Bertinetti, L., Schenk, A. S., Verch, A., Dmitrovic, V., Bomans, P. H. H., Frederik, P. M., Laven, J., van der Schoot, P., Aichmayer, B., de With, G., De Yoreo, J. J., and Sommerdijk, N. A. J. M. 2013. Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate. Nature Communications, 4:1507.Google Scholar
Hagadorn, J. W., Xiao, S., Donoghue, P. C. J., Bengtson, S., Gostling, N. J., Pawlowska, M., Raff, E. C., Raff, R. A., Turner, F. R., Yin, C., Zhou, C., Yuan, X., McFeely, M. B., Stampanoni, M., and Nealson, K. H. 2006. Cellular and subcellular structure of Neoproterozoic embryos. Science, 314:291294.Google Scholar
Hamm, L. M., Giuffre, A. J., Han, N., Tao, J., Wang, D., De Yoreo, J. J., and Dove, P. M. 2014. Reconciling disparate views of template-directed nucleation through measurement of calcite nucleation kinetics and binding energies. Proceedings of the National Academy of Sciences of the United States of America, 111:13041309.Google Scholar
Han, J., Kubota, S., Li, G., Yao, X., Yang, X., Shu, D., Li, Y., Kinoshita, S., Sasaki, O., Komiya, T., and Yan, G. 2013. Early Cambrian pentamerous cubozoan embryos from South China. PLoS ONE, 8:e70741 Google Scholar
Heinemann, S., Heinemann, C., Jäger, M., Neunzehn, J., Wiesmann, H. P., and Hanke, T. 2011. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds. ACS Applied Materials and Interfaces, 3:43234331.Google Scholar
Hu, Q., Nielsen, M. H., Freeman, C. L., Hamm, L. M., Tao, J., Lee, J. R. I., Han, T. Y. J., Becker, U., Harding, J. H., Dove, P. M., and Yoreo, J. J. D. 2012. The thermodynamics of calcite nucleation at organic interfaces: Classical vs. non-classical pathways. Faraday Discussions, 159:509523.Google Scholar
Huldtgren, T., Cunningham, J. A., Yin, C., Stampanoni, M., Marone, F., Donoghue, P. C. J., and Bengtson, S. 2011. Fossilized nuclei and germination structures identify Ediacaran “animal embryos” as encysting protists. Science, 334:16961699.Google Scholar
Iler, R. 1979. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties, and Biochemistry. Wiley-Interscience, New York.Google Scholar
Kazmierczak, J., and Kempe, S. 1984. Calcium build-up in the Precambrian sea, p. 329345. In Seckbach, J. (ed.), Origins. Kluwer Academic Publishers, Netherlands.Google Scholar
Kholodov, V. N. 2014. Geochemical problems of the behavior of phosphorus: A basis for the biogenic hypothesis of phosphorite formation. Lithology and Mineral Resources, 49:228249.Google Scholar
Kolodny, Y. 1969. Are marine phosphorites forming today? Nature, 224:10171018.Google Scholar
Kramer, J. 1965. History of sea water. Constant temperature-pressure equilibrium models compared to liquid inclusion analyses. Geochimica et Cosmochimica Acta, 29:921945.Google Scholar
Landman, N. H., Polizzotto, K., Mapes, R. H., and Tanabe, K. 2006. Cameral membranes in prolecantid and goniatitid ammonoids from the Permian Arcturus Formation, Nevada, USA. Lethaia, 39:365379.Google Scholar
Lerosey-Aubril, R., Hegna, T. A., Kier, C., Bonino, E., Habersetzer, J., and Carre, M. 2012. Controls on gut phosphatisation: the trilobites from the Weeks Formation Lagerstätte (Cambrian; Utah). PLoS ONE, 7(3):e32934.Google Scholar
Li, Y.-L., Konhauser, K. O., Cole, D. R., and Phelps, T. J. 2011. Mineral ecophysiological data provide growing evidence for microbial activity in banded-iron formations. Geology, 39:707710.Google Scholar
Liu, Q., Ding, J., Mante, F. K., Wunder, S. L., and Baran, G. R. 2002. The role of surface functional groups in calcium phosphate nucleation on titanium foil: a self-assembled monolayer technique. Biomaterials, 23:31033111.Google Scholar
Liu, Y., Li, Y., Shao, T., Zhang, H., Wang, Q., and Qiao, J. 2014a. Quadrapyrgites from the lower Cambrian of South China: growth pattern, post-embryonic development, and affinity. Chinese Science Bulletin. doi: 10.1007/s11434-014-0481-5.Google Scholar
Liu, Y., Xiao, S., Shao, T., Broce, J., and Zhang, H. 2014b. The oldest known priapulid-like scalidophoran animal and its implications for the early evolution of cycloneuralians and ecdysozoans. Evolution & Development, 16:155165.Google Scholar
Long, J. A., and Trinajstic, K. 2010. The Late Devonian Gogo Formation Lagerstätte of Western Australia: exceptional early vertebrate preservation and diversity. Annual Review of Earth and Planetary Sciences, 38:255279.Google Scholar
Long, J. A., Trinajstic, K., Young, G. C., and Senden, T. 2008. Live birth in the Devonian period. Nature, 453:650652.Google Scholar
Lowenstein, T. K., Timofeeff, M. N., Brennan, S. T., Hardie, L. A., and Demicco, R. V. 2001. Oscillations in Phanerozoic seawater chemistry: evidence from fluid inclusions. Science, 294:10861088.Google Scholar
Maas, A., Braun, A., Dong, X.-P., Donoghue, P. C. J., Müller, K. J., Olempska, E., Repetski, J. E., Siveter, D. J., Stein, M., and Waloszek, D. 2006. The ‘Orsten’—more than a Cambrian Konservat-Lagerstätte yielding exceptional preservation. Palaeoworld, 15:266282.Google Scholar
Maas, A., Mayer, G., Kristensen, R. M., and Waloszek, D. 2007a. A Cambrian micro-lobopodian and the evolution of arthropod locomotion and reproduction. Chinese Science Bulletin, 52:33853392.Google Scholar
Maas, A., and Waloszek, D. 2005. Phosphatocopina—ostracode-like sister group of Eucrustacea. Hydrobiologia, 538:139152.Google Scholar
Maas, A., Waloszek, D., Haug, J. T., and Müller, K. J. 2007b. A possible larval roundworm from the Cambrian ‘Orsten’ and its bearing on the phylogeny of Cycloneuralia. Memoirs of the Association of Australasian Palaeontologists, 34:499519.Google Scholar
Maas, A., Waloszek, D., Haug, J. T., and Müller, K. J. 2009. Loricate larvae (Scalidophora) from the Middle Cambrian of Australia. Memoirs of the Association of Australasian Paleontologists, 37:281302.Google Scholar
Maeda, H., Tanaka, G., Shimobayashi, N., Ohno, T., and Matsuoka, H. 2011. Cambrian Orsten Lagerstätte from the Alum Shale Formation: Fecal pellets as a probable source of phosphorus preservation. PALAIOS, 26:255–231.Google Scholar
Markov, I. V. 2004. Crystal Growth for Beginners. Fundamentals of Nucleation, Crystal Growth and Epitaxy, 2nd Edition. World Scientific Publishing, Singapore.Google Scholar
Martill, D. M. 1990. Macromolecular resolution of fossilized muscle tissue from an elopomorph fish. Nature, 346:171172.Google Scholar
McCobb, L. M. E., Briggs, D. E. G., Hall, A. R., and Kenward, H. K. 2004. The preservation of invertebrates in 16th-Century cesspits at St Saviourgate, York. Archaeometry, 46:157169.Google Scholar
Miles, R. S., and Young, G. C. 1977. Placoderm interrelationships reconsidered in the light of new ptyctodontids from Gogo Western Australia. Linnean Society of London Symposium Series, 4:123198.Google Scholar
Müller, K. J. 1981. Arthropods with phosphatized soft parts from the Upper Cambrian “orsten” of Sweden, p. 147151. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. U. S. Geological Survey, Reston, Virginia.Google Scholar
Müller, K. J. 1985. Exceptional preservation in calcareous nodules. Philosophical Transactions of the Royal Society B-Biological Sciences, 311:6773.Google Scholar
Müller, K. J., and Hinz, I. 1992. Cambrogeoginidae fam. Nov., soft-integumented Problematica from the Middle Cambrian of Australia. Alcheringa, 16:333353.Google Scholar
Müller, K. J., and Walossek, D. 1985. A remarkable arthropod fauna from the Upper Cambrian “Orsten” of Sweden, p. 161172. In Bowes, D. R. and Waterston, C. D. (eds.), Fossil Arthropods as Living Animals. Transactions of the Royal Society of Edinburgh 76, Edinburgh.Google Scholar
Olempska, E. 2012. Exceptional soft-tissue preservation in boring ctenostome bryozoans and associated “fungal” borings from the Early Devonian of Podolia, Ukraine. Acta Palaeontologica Polonica, 57:925940.Google Scholar
Olempska, E., Horne, D. J., and Szaniawski, H. 2012. First record of preserved soft parts in a Paleozoic podocopid (Metacopina) ostracod, Cytherellina submagna: phylogenetic implications. Proceedings of the Royal Society B-Biological Sciences, 279:564570.Google Scholar
Onuma, K., Oyane, A., Kokubo, T., Treboux, G., Kanzaki, N., and Ito, A. 2000. Nucleation of calcium phosphate on 11-mercaptoundecanoic acid self-assembled monolayer in a pseudophysiological solution. The Journal of Physical Chemistry B, 104:1195011956.Google Scholar
Orr, P. J., Benton, M. J., and Briggs, D. E. G. 2003. Post-Cambrian closure of the deep-water slope-basin taphonomic window, Geology, 31:769772.Google Scholar
Oxmann, J. F., and Schwendenmann, L. 2014. Quantification of octacalcium phosphate, authigenic apatite and detrital apatite in coastal sediments using differential dissolution and standard addition. Ocean Science Discussions, 11:293329.Google Scholar
Parkurst, D., and Appelo, C. 1999. User's Guide to PHREEQC (Version 2): A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations.Google Scholar
Patzkowsky, M. E., and Holland, S. M. 2012. Stratigraphic Paleobiology: Understanding the Distribution of Fossil Taxa in Time and Space. Chicago University Press, Chicago.Google Scholar
Perrone, J., Fourest, B., and Giffaut, E. 2002. Surface characterization of synthetic and mineral carbonate fluoroapatites. Journal of Colloid and Interface Science, 249:441452.Google Scholar
Piper, D. Z., and Codispoti, L. A. 1975. Marine phosphorite deposits and the nitrogen cycle. Science, 188:1518.Google Scholar
Playford, P. E. 1980. The Devonian “Great Barrier Reef” of the Canning Basin, Western Australia. American Association of Petroleum Geologists Bulletin, 64:814840.Google Scholar
Playford, P. E., and Wallace, C. J. K. 2001. Exhalative mineralization in Devonian reef complexes of the Canning Basin, Western Australia. Economic Geology, 96:15951610.Google Scholar
Porter, S. M. 2004. Closing the phosphatization window: testing for the influence of taphonomic megabias on the pattern of small shelly fossil decline. PALAIOS, 19:178183.Google Scholar
Pufahl, P. K. 2010. Bioelemental sediments, p. 477503. In James, N. P. and Dalrymple, R. W. (eds.), Facies Models 4. Geological Association of Canada, St. Johns.Google Scholar
Raff, E. C., Andrews, M. E., Turner, F. R., Toh, E., Nelson, D. E., and Raff, R. A. 2013. Contingent interactions among biofilm–forming bacteria determine preservation or decay in the first steps toward fossilization of marine embryos. Evolution & Development, 15:243256.Google Scholar
Raff, E. C., Schollaert, K. L., Nelson, D. E., Donoghue, P. C. J., Thomas, C.-W., Turner, F. R., Stein, B. D., Dong, X.-P., Bengtson, S., Huldtgren, T., Stampanoni, M., Chongyu, Y., and Raff, R. A. 2008. Embryo fossilization is a biological process mediated by microbial biofilms. Proceedings of the National Academy of Sciences of the United States of America, 105:1936019365.Google Scholar
Raff, E. C., Vilinski, J. T., Turner, F. R., Donoghue, P. C. J., and Raff, R. A. 2006. Experimental taphonomy shows the feasibility of fossil embryos. Proceedings of the National Academy of Sciences of the United States of America, 103:58465851.Google Scholar
Raff, R. A., and Raff, E. C. 2014. The role of biology in the fossilization of embryos and other soft-bodied organisms: Microbial biofilms and Lagerstätten. p. 83100. In Laflamme, M., Schiffbauer, J. D., and Darroch, S. A. F. (eds.), Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization. The Paleontological Society Papers 20. Yale Press, New Haven, CT.Google Scholar
Schiffbauer, J. D., and Laflamme, M. 2012. Lagerstätten through time: A collection of exceptional preservational pathways from the terminal Proterozoic through today. PALAIOS, 27:275278.Google Scholar
Schiffbauer, J. D., Xiao, S., Sen Sharma, K., and Wang, G. 2012. The origin of intracellular structures in Ediacaran metazoan embryos. Geology, 40:223226.Google Scholar
Seilacher, A. 1970. Begriff and bedeutung der Fossil-Lagerstätten. Neues Jarhbuch fur Geologie und Palaontologie, Abhandlungen 1970:3439.Google Scholar
Sheldon, R. P. 1981. Ancient marine phosphorites. Annual Review of Earth and Planetary Sciences, 9:251284.Google Scholar
Shimura, T., Kon, Y., Sawaki, Y., Hirata, T., Han, J., Shu, D., and Komiya, T. 2014. In-situ analyses of phosphorus contents of carbonate minerals: Reconstruction of phosphorus contents of seawater from the Ediacaran to early Cambrian. Gondwana Research, 25:10901107.Google Scholar
Steiner, M., Qian, Y., Li, G., Hagadorn, J. W., and Zhu, M. 2014. The developmental cycles of early Cambrian Olivooidae fam. nov. (?Cycloneuralia) from the Yangtze Platform (China). Palaeogeography Palaeoclimatology Palaeoecology, 398:97124.Google Scholar
Tanabe, K., Mapes, R. H., and Kidder, D. L. 2001. A phosphatized cephalopod mouthpart from the Upper Pennsylvanian of Oklahoma, U.S.A. Paleontological Research, 5:311318.Google Scholar
Tang, C. M. 2002. Orsten deposits from Sweden: miniature Late Cambrian arthropods, p. 117130. In Bottjer, D. J., Etter, W., Hagadorn, J. W., and Tang, C. M. (eds.), Exceptional Fossil Preservation. Columbia University Press, NY.Google Scholar
Tarasevich, B. J., Chusuei, C. C., and Allara, D. L. 2003. Nucleation and growth of calcium phosphate from physiological solutions onto self-assembled templates by a solution-formed nucleus mechanism. The Journal of Physical Chemistry B, 107:1036710377.Google Scholar
Tetlie, O. E., Braddy, S. J., Butler, P. D., and Briggs, D. E. G. 2004. A new Eurypterid (Chelicerata: Eurypterida) from the Upper Devonian Gogo Formation of Western Australia, with a review of the Rhenopteridae. Palaeontology, 47:801809.Google Scholar
Trinajstic, K., Marshall, C., Long, J. A., and Bitfield, K. 2007. Exceptional preservation of nerve and muscle tissues in Late Devonian placoderm fish and their evolutionary implications. Biology Letters, 3:197200.Google Scholar
Tucker, M. 1992. The Precambrian–Cambrian boundary: seawater chemistry, ocean circulation and nutrient supply in metazoan evolution, extinction and biomineralization. Journal of the Geological Society of London, 149:665668.Google Scholar
Wallace, A. F., De Yoreo, J. J., and Dove, P. M. 2009. Kinetics of silica nucleation on carboxyl-and amine-terminated surfaces: insights for biomineralization. Journal of the American Chemical Society, 131:52445250.Google Scholar
Walossek, D., Hinz-Schallreuter, I., Shergold, J. H., and Mueller, K. J. 1993. Three-dimensional preservation of arthropod integument from the Middle Cambrian of Australia. Lethaia, 26:715.Google Scholar
Walossek, D., and Müller, K. J. 1998. Cambrian “Orsten”-type arthropods and the phylogeny of Crustacea, p. 139153. In Fortey, R. A. and Thomas, R. H. (eds.), Arthropod Relationships, Systematics Association Special Volume Series 55. Chapman & Hall, London.Google Scholar
Walossek, D., and Szaniawski, H. 1991. Cambrocaris baltica n. gen. n. sp., a possible stem-lineage crustacean from the Upper Cambrian of Poland. Lethaia, 24:363378.Google Scholar
Waloszek, D. 2003. The “Orsten” window—a three-dimensionally preserved Upper Cambrian meiofauna and its contribution to our understanding of the evolution of Arthropoda. Paleontological Research, 7:7188.Google Scholar
Wilby, P. R., Briggs, D. E. G., and Riou, B. 1996. Mineralization of soft-bodied invertebrates in a Jurassic metalliferous deposit. Geology, 24:847850.Google Scholar
Wilby, P. R., and Martill, D. M. 1992. Fossil fish stomachs: a microenvironment for exceptional preservation. Historical Biology, 6:2536.Google Scholar
Xiao, S. 2002. Mitotic topologies and mechanics of Neoproterozoic algae and animal embryos. Paleobiology, 28:244250.Google Scholar
Xiao, S., Hagadorn, J. W., Zhou, C., and Yuan, X. 2007a. Rare helical spheroidal fossils from the Doushantuo Lagerstätte: Ediacaran animal embryos come of age? Geology, 35:115118.Google Scholar
Xiao, S., and Knoll, A. H. 1999. Fossil preservation in the Neoproterozoic Doushantuo phosphorite Lagerstätte, South China. Lethaia, 32:219240.Google Scholar
Xiao, S., and Knoll, A. H. 2000. Phosphatized animal embryos from the Neoproterozoic Doushantuo Formation at Weng'an, Guizhou, South China. Journal of Paleontology, 74:767788.Google Scholar
Xiao, S., Knoll, A. H., Schiffbauer, J. D., Zhou, C., and Yuan, X. 2012. Comment on “Fossilized nuclei and germination structures identify Ediacaran ‘animal embryos’ as encysting protists.” Science, 335:1169c.Google Scholar
Xiao, S., and Schiffbauer, J. D. 2009. Microfossil phosphatization and its astrobiological implications, p. 89118. In Seckbach, J. and Walsh, M. (eds.), From Fossils to Astrobiology: Records of Life on Earth and the Search for Extraterrestrial Biosignatures. Cellular Origin, Life in Extreme Habitats, and Astrobiology Volume 12. Springer.Google Scholar
Xiao, S., Schiffbauer, J. D., McFadden, K. A., and Hunter, J. 2010. Petrographic and SIMS pyrite sulfur isotope analyses of Ediacaran chert nodules: Implications for microbial processes in pyrite rim formation, silicification, and exceptional fossil preservation. Earth and Planetary Science Letters, 297:481495.Google Scholar
Xiao, S., Yuan, X., and Knoll, A. H. 2000. Eumetazoan fossils in terminal Proterozoic phosphorites? Proceedings of the National Academy of Sciences of the United States of America, 97:1368413689.Google Scholar
Xiao, S., Zhang, Y., and Knoll, A. H. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature, 391:553558.Google Scholar
Xiao, S., Zhou, C., Liu, P., Wang, D., and Yuan, X. 2014. Phosphatized acanthomorphic acritarchs and related microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their implications for biostratigraphic correlation. Journal of Paleontology, 88:167.Google Scholar
Xiao, S., Zhou, C., and Yuan, X. 2007b. Undressing and redressing Ediacaran embryos. Nature, 446:E910.Google Scholar
Xue, Y., Tang, T., Yu, C., and Zhou, C. 1995. Large Spheroidal Chlorophyta fossils from the Doushantuo Formation phosphoric sequence (late Sinian), central Guizhou, South China. Acta Palaeontologica Sinica, 34:688706.Google Scholar
Yasui, K., Reimer, J. D., Liu, Y., Yao, X., Kubo, D., Shu, D., and Li, Y. 2013. A diploblastic radiate animal at the dawn of Cambrian diversification with a simple body plan: distinct from Cnidaria? PLoS ONE, 8:e65890.Google Scholar
Yin, Z., Liu, P., Li, G., Tafforeau, P., and Zhu, M. 2014. Biological and taphonomic implications of Ediacaran fossil embryos undergoing cytokinesis. Gondwana Research, 25:10191026.Google Scholar
Yin, Z., Zhu, M., Tafforeau, P., Chen, J., Liu, P., and Li, G. 2013. Early embryogenesis of potential bilaterian animals with polar lobe formation from the Ediacaran Weng'an Biota, South China. Precambrian Research, 225:4457.Google Scholar
Yue, Z., and Bengtson, S. 1999. Embryonic and post-embryonic development of the Early Cambrian cnidarian Olivooides . Lethaia, 32:181195.Google Scholar
Zhang, X., and Pratt, B. R. 1994. Middle Cambrian arthropod embryos with blastomeres. Science, 266:637639.Google Scholar
Zhang, X., Pratt, B. R., and Shen, C. 2011. Embryonic development of a middle Cambrian (500 myr old) scalidophoran worm. Journal of Paleontology, 85:898903.Google Scholar