Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T11:22:45.853Z Has data issue: false hasContentIssue false

Early radiation of echinoderms

Published online by Cambridge University Press:  21 July 2017

James Sprinkle
Affiliation:
Department of Geological Sciences, University of Texas, Austin, Texas 78712, USA
Thomas E. Guensburg
Affiliation:
Physical Science Division, Rock Valley College, Rockford, Illinois 61114, USA
Get access

Abstract

Echinoderms underwent a major two-part radiation that produced all of the major groups found in the fossil record between the Early Cambrian and the Middle Ordovician. A small initial radiation in the Early and Middle Cambrian produced about nine classes containing low-diversity members of the Cambrian Evolutionary Fauna. These were characterized by primitive morphology, simple ambulacral feeding structures, and the early development of a multiplated stalk or stem for attachment to skeletal fragments on a soft substrate. Several groups became extinct at the end of the Middle Cambrian, leaving the Late Cambrian as a gap of very low diversity in the fossil record of echinoderms with only four classes preserved and very few occurrences of complete specimens, mostly associated with early hardgrounds. The survivors from this interval re-expanded in the Early Ordovician and were joined by many newly evolved groups to produce a much larger radiation of more advanced, diverse, and successful echinoderms representing the Paleozoic Evolutionary Fauna on both hard and soft substrates. At least 17 classes were present by the Middle Ordovician, the all-time high point for echinoderm class diversity, and nearly all of the major ways-of-life (except for deep infaunal burrowing) had been developed. With the rise to dominance of crinoids, many less successful or archaic groups did not survive the Middle Ordovician, and echinoderm class diversity dropped further because of the mass extinction at the end of the Ordovician. This weeding-out process of other less-successful echinoderm groups continued throughout the rest of the Paleozoic, and only five classes of echinoderms have survived to the Recent from this early Paleozoic radiation.

Type
Research Article
Copyright
Copyright © 1997 by The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ausich, W. I. 1986a. Early Silurian rhodocrinitacean crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:84106.Google Scholar
Ausich, W. I. 1986b. Early Silurian inadunate crinoids (Brassfield Formation, Ohio). Journal of Paleontology, 60:719735.Google Scholar
Ausich, W. I. 1988. Evolutionary convergence and parallelism in crinoid calyx design. Journal of Paleontology, 62:906916.Google Scholar
Ausich, W. I. 1996. Crinoid plate circlet homologies. Journal of Paleontology, 70:955964.Google Scholar
Ausich, W. I., and Bottjer, D. J. 1982. Tiering in suspension-feeding communities on soft substrata throughout the Phanerozoic. Science, 216:173174.CrossRefGoogle ScholarPubMed
Ausich, W. I., and Bottjer, D. J. 1991. History of tiering among suspension feeders in the benthic marine ecosystem. Journal of Geological Education, 39:313319.Google Scholar
Bell, B. M. 1976. A Study of North American Edrioasteroidea. New York State Museum and Science Service, Memoir 21, 447 p.Google Scholar
Blake, D. B., and Guensburg, T. E. 1988. The water vascular system and functional morphology of Paleozoic asteroids. Lethaia, 21:189206.Google Scholar
Blake, D. B., and Guensburg, T. E. 1994. Predation by the Ordovician asteroid Promopalaester on a pelecypod. Lethaia, 27:235239.Google Scholar
Bockelie, J. F. 1981. The Middle Ordovician of the Oslo region, Norway, 30. The eocrinoid genera Cryptocrinites, Rhipidocystis and Bockia. Norsk Geologisk Tidsskrift, 61:123147.Google Scholar
Bockelie, J. F. 1984. The Diploporita of the Oslo region, Norway. Palaeontology, 27:168.Google Scholar
Brett, C. E. 1981. Terminology and functional morphology of attachment structures in pelmatozoan echinoderms. Lethaia, 14:343370.Google Scholar
Brett, C. E., and Liddell, W. D. 1978. Preservation and paleoecology of a Middle Ordovician hardground community. Paleobiology, 4:329348.Google Scholar
Brett, C. E., and Liddell., W. D. and Derstler, K. L. 1983. Late Cambrian hard substrate communities from Montana/Wyoming; the oldest known hardground encrusters. Lethaia, 16:281289.Google Scholar
Broadhead, T. W. 1984. Macurdablastus, a Middle Ordovician blastoid from the southern Appalachians. University of Kansas Paleontological Contributions Paper, 110:19.Google Scholar
Broadhead, T. W. 1987. Heterochrony and the achievement of the multibrachiate grade in camerate crinoids. Paleobiology, 13:177186.Google Scholar
Brower, J. C. 1973. Crinoids from the Girardeau Limestone (Ordovician). Palaeontographica Americana, 7:263499.Google Scholar
Brower, J. C. 1992a. Cupulocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:99128.Google Scholar
Brower, J. C. 1992b. Hybocrinid and disparid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 66:973993.Google Scholar
Brower, J. C. 1994. Camerate crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 68:570599.Google Scholar
Brower, J. C. 1995a. Eoparisocrinid crinoids from the Middle Ordovician (Galena Group, Dunleith Formation) of northern Iowa and southern Minnesota. Journal of Paleontology, 69:351366.Google Scholar
Brower, J. C. 1995b. Dendrocrinid crinoids from the Ordovician of northern Iowa and southern Minnesota. Journal of Paleontology, 69:939960.Google Scholar
Brower, J. C., and Veinus, J. 1974. Middle Ordovician crinoids from southwestern Virginia and eastern Tennessee. Bulletins of American Paleontology, 66:1125.Google Scholar
Brower, J. C., and Veinus, J. 1978. Middle Ordovician crinoids from the Twin Cities area of Minnesota. Bulletins of American Paleontology, 74:372506.Google Scholar
Chauvel, J. 1966. Échinodermes de l'Ordovicien du Maroc. Cahiers de Paleóntologie, Editions du Centre National de la Recherche Scientifique, Paris, 120 p.Google Scholar
Chauvel, J. 1978. Complements sur les Echinodermes du Paleozoique marocain (Diploporites, Eocrinoides, Edrioasteroides). Notes du Service geologique du Maroc, 39:2778.Google Scholar
Chauvel, J., and Melendez, B. 1978. Les Échinodermes (Cystoides, Asterozoaires, Homalozoaires) de l'Ordovicien moyen des Monts de Tolede (Espagne). Estudios Geológicas, 34:7587.Google Scholar
Daley, P. E. J. 1996. The first solute which is attached as an adult: a mid-Cambrian fossil from Utah with echinoderm and chordate affinities. Zoological Journal of the Linnean Society, 117:405440.Google Scholar
Derstler, K. 1981. Morphological diversity of Early Cambrian echinoderms, p. 7175. In Taylor, M. E. (ed.), Short Papers for the Second International Symposium on the Cambrian System. U.S. Geological Survey Open-File Report 81–743.Google Scholar
Derstler, K. 1985. Studies on the Morphologic Evolution of Echinoderms. Unpublished Ph.D. Dissertation, University of California, Davis, 438 p.Google Scholar
Donovan, S. K. 1988. The early evolution of the Crinoidea, p. 235244. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Donovan, S. K. 1989. The significance of the British Ordovician crinoid fauna. Modern Geology, 13:243255.Google Scholar
Donovan, S. K., and Paul, C. R. C. 1982. Lower Cambrian echinoderm plates from Comley, Shropshire, England. Geological Magazine, 119:611614.Google Scholar
Durham, J. W. 1966. Camptostroma, an Early Cambrian supposed scyphozoan, referable to Echinodermata. Journal of Paleontology, 40:12161220.Google Scholar
Durham, J. W. 1967. Notes of the Helicoplacoidea and early echinoderms. Journal of Paleontology, 41:97102.Google Scholar
Durham, J. W. 1968. Lepidocystoids, p. S631S634. In Moore, R. C. (ed.), Treatise on Invertebrate Paleontology, Part S, Echinodermata 1 (1–2). Geological Society of America and University of Kansas, New York, New York, and Lawrence, Kansas.Google Scholar
Durham, J. W. 1993. Observations on the Early Cambrian helicoplacoid echinoderms. Journal of Paleontology, 67:590604 Google Scholar
Dzik, J., and Orlowski, S. 1993. The Late Cambrian eocrinoid Cambrocrinus . Acta Palaeontologica Polonica, 38:2134.Google Scholar
Eckert, J. 1988. Late Ordovician extinction of North American and British crinoids. Lethaia, 21:147167.Google Scholar
Fatka, O., and Kordule, V. 1985. Etoctenocystis bohemica gen. et sp. nov., new ctenocystoid from Czechoslovakia (Echinodermata, Middle Cambrian). Vestnik Ustredniho ustavu Geologickeho, 60:225229.Google Scholar
Foote, M. 1992. Paleozoic record of morphological diversity in blastozoan echinoderms. Proceedings of the National Academy of Sciences, 89:73257329.Google Scholar
Foote, M. 1994. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology, 20:320344.CrossRefGoogle Scholar
Foote, M. 1995. Morphological diversification of Paleozoic crinoids. Paleobiology, 21:273299.Google Scholar
Friedrich, W.-P. 1993. Systematik und Funktionsmorphologie Mittelkambrischer Cincta (Carpoidea, Echinodermata). Beringeria, 7:3190.Google Scholar
Gehling, J. G. 1987. Earliest known echinoderm—a new Ediacaran fossil from the Pound Subgroup of South Australia. Alcheringa, 11:337345.Google Scholar
Gil Cid, M. D., Dominguez Alonzo, P., Escribano Rodenas, M., and Silvan Pobes, E. 1996. Un nuevo rombifero, Homocystites geyeri n. sp., en el Ordovicico de El Viso del Marques (C. Real). Geogaceta, 20:235238.Google Scholar
Gilliland, P. M. 1993. The skeletal morphology, systematics and evolutionary history of holothurians. Palaeontological Association Special Papers in Palaeontology, 47:1147.Google Scholar
Glaessner, M. F., and Wade, M. 1966. The Late Precambrian fossils from Ediacara, South Australia. Palaeontology, 9:599628.Google Scholar
Guensburg, T. E. 1984. Echinodermata of the Middle Ordovician Lebanon Limestone, central Tennessee. Bulletins of American Paleontology, 86:1100.Google Scholar
Guensburg, T. E. 1988. Systematics, functional morphology, and life modes of Late Ordovician edrioasteroids, Orchard Creek Shale, southern Illinois. Journal of Paleontology, 62:110126.CrossRefGoogle Scholar
Guensburg, T. E. 1992. Paleoecology of hardground encrusting and commensal crinoids, Middle Ordovician, Tennessee. Journal of Paleontology, 66:129147.Google Scholar
Guensburg, T. E. and Sprinkle, J. 1992. Rise of echinoderms in the Paleozoic Evolutionary Fauna: significance of paleoenvironmental controls. Geology, 20:407410.Google Scholar
Guensburg, T. E. and Sprinkle, J. 1994a. Echinoderm rapid diversification and faunas across the Cambro-Ordovician boundary. Geological Society of America Abstracts with Programs, 26:A-427.Google Scholar
Guensburg, T. E. and Sprinkle, J. 1994b. Revised phylogeny and functional interpretation of the Edrioasteroidea based on new taxa from the Early and Middle Ordovician of western Utah. Fieldana (Geology), New Series, 29:143.Google Scholar
Guensburg, T. E. and Sprinkle, J. In press. Ecologic radiation of Cambro-Ordovician echinoderms. In Zhuravlev, A. Y. and Riding, R. (eds.), Ecology of the Cambrian Radiation. Columbia University Press, New York.Google Scholar
Haude, R. 1994. Fossil holothurians: constructional morphology of the sea cucumber and the origin of the calcareous ring, p. 517522. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Jefferies, R. P. S. 1967. Some fossil chordates with echinoderm affinities. Symposia of the Zoological Society of London 20:163208.Google Scholar
Jefferies, R. P. S. 1986. The Ancestry of the Vertebrates. British Museum (Natural History), London, 376 p.Google Scholar
Jefferies, R. P. S. 1997. A defence of the calcichordates. Lethaia, 30:110.Google Scholar
Jefferies, R. P. S., Brown, N. A., and Daley, P. E. J. 1996. The early phylogeny of chordates and echinoderms and the chordate left-right asymmetry and bilateral symmetry. Acta Zoologica, 77:101122.Google Scholar
Jell, P. A., Burrett, C. F., and Banks, M. R. 1985. Cambrian and Ordovician echinoderms from eastern Australia. Alcheringa, 9:183208.Google Scholar
Kelly, S. M. 1982. Origin of the crinoid orders Disparida and Cladida: possible inadunate cup plate homologies. Third North American Paleontological Convention, Proceedings, 1:285290.Google Scholar
Kolata, D. R. 1975. Middle Ordovician echinoderms from northern Illinois and southern Wisconsin. Paleontological Society Memoir, 7:174.Google Scholar
Kolata, D. R., and Jollie, M. 1982. Anomalocystitid mitrates (Stylophora—Echinodermata) from the Champlainian (Middle Ordovician) Guttenberg Formation of the upper Mississippi Valley region. Journal of Paleontology, 56:631653.Google Scholar
Lane, N. G. 1970. Lower and Middle Ordovician crinoids from west-central Utah. Brigham Young University Geology Studies, 17:317.Google Scholar
Lane, N. G., and Webster, G. D. 1980. Crinoidea, p. 144157. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms, Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Lewis, R. D. 1981. Archaetaxocrinus, new genus, the earliest known flexible crinoid (Whiterockian) and its phylogenetic implications. Journal of Paleontology, 55:227238.Google Scholar
Lewis, R. D. 1982. Depositional environments and paleoecology of the Oil Creek Formation (Middle Ordovician), Arbuckle Mountains and Criner Hills, Oklahoma. Unpublished Ph.D. Dissertation, University of Texas at Austin, 352 p.Google Scholar
Lewis, R. D., Sprinkle, J., bailey, J. B., Moffit, J., and Parsley, R. L. 1987. Mandalacystis, a new rhipidocystid eocrinoid from the Whiterockian Stage (Ordovician) in Oklahoma and Nevada. Journal of Paleontology, 61:12221235.Google Scholar
Mooi, R., David, B., and Marchand, D. 1994. Echinoderm skeletal homologies: classical morphology meets modern phylogenetics, p. 8795. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Parsley, R. L. 1970. Revision of the North American Pleurocystitidae (Rhombifera—Cystoidea). Bulletins of American Paleontology, 58:132213.Google Scholar
Parsley, R. L. 1990. Aristocystites, a recumbent diploporid (Echinodermata) from the Middle and Late Ordovician of Bohemia, CSSR. Journal of Paleontology, 64:278293.Google Scholar
Parsley, R. L. 1991. Review of selected North American mitrate stylophorans (Homalozoa: Echinodermata). Bulletins of American Paleontology, 100:157.Google Scholar
Parsley, R. L., and Mintz, L. W. 1975. North American Paracrinoidea: (Ordovician: Paracrinozoa, new, Echinodermata). Bulletins of American Paleontology, 68:1115.Google Scholar
Paul, C. R. C. 1967. The functional morphology and mode of life of the cystoid Pleurocystites, E. Billings, 1854. Zoological Society of London, Symposium, 20:105123.Google Scholar
Paul, C. R. C. 1968. Macrocystella Callaway, the earliest glyptocystitid cystoid. Palaeontology, 11:580600.Google Scholar
Paul, C. R. C. 1976. Palaeogeography of primitive echinoderms in the Ordovician, p. 553574. In Bassett, M. G. (ed.), The Ordovician System. University of Wales Press and National Museum of Wales, Cardiff. Google Scholar
Paul, C. R. C. 1984. British Ordovician Cystoids, Part 2. Monograph of the Palaeontographical Society, 136:65152.Google Scholar
Paul, C. R. C. 1988. The phylogeny of the cystoids, p. 199213. In Paul, C. R. C. and Smith, A. B. (eds.), Echinoderm Phylogeny and Evolutionary Biology. Clarendon Press, Oxford.Google Scholar
Paul, C. R. C., and Bochelie, J. F. 1983. Evolution and functional morphology of the cystoid Sphaeronites in Britain and Scandinavia. Palaeontology, 26:687734.Google Scholar
Paul, C. R. C., and Smith, A. B. 1984. The early radiation and phylogeny of echinoderms. Biological Reviews, 59:443481.CrossRefGoogle Scholar
Peterson, K. J. 1995. A phylogenetic test of the calcichordate scenario. Lethaia, 28:2538.Google Scholar
Philip, G. M. 1979. Carpoids—echinoderms or chordates. Biological Reviews, 54:439471.Google Scholar
Prokop, R. J. 1962. Akadocrinus nov. gen., nova lilijice z jineckeho kambria (Eocrinoidea) (Akadocrinus nov. gen., a new crinoid from the Cambrian of the Jince area [Eocrinoidea]). Ustredni Sbornik Ustavh Geologicky, Oddil Paleont., 27:3139.Google Scholar
Prokop, R. J. 1964. Sphaeronitoidea Neumayr of the lower Paleozoic of Bohemia (Cystoidea, Diploporita). Sbornik Geologickych Ved, Paleontologie Series, 3:737.Google Scholar
Regnéll, G. 1960. “Intermediate” forms in early Palaeozoic echinoderms. Report of the International Geological Congress, XXI Session, Norden, 1960, Part 22:7180.Google Scholar
Prokop, R. J. 1975. Review of recent research on “pelmatozoans.” Paläontologische Zeitschrift, 49:530564.Google Scholar
Rozhnov, S. V. 1988. Sea-lilies from the Lower Ordovician. Paleontological Journal, 1988:6779. (In Russian with English summary.) Google Scholar
Rozhnov, S. V. 1994a. The change in hardground communities at the Cambro-Ordovician boundary. Paleontological Journal, 1994:7075. (In Russian with English summary.) Google Scholar
Rozhnov, S. V. 1994b. Comparative morphology of Rhipidocystis Jaekel, 1900 and Cryptocrinites von Buch, 1840 (Eocrinoidea; Ordovician), p. 173178. In David, B., Guille, A., Feral, J.-P., and Roux, M. (eds.), Echinoderms Through Time. A. A. Balkema, Rotterdam.Google Scholar
Rozhnov, S. V., Fedorov, A. B., and Sayutina, T. A. 1992. Lower Cambrian Echinodermata on the USSR territory. Paleontological Journal, 1992:5366. (In Russian with English summary.) Google Scholar
Sandberg, P. A. 1983. An oscillating trend in Phanerozoic carbonate mineralogy. Nature, 305:1922.Google Scholar
Sepkoski, J. J. Jr. 1991. A model of onshore-offshore change in faunal diversity. Paleobiology, 17:5877.Google Scholar
Sepkoski, J. J. Jr., and Miller, A. I. 1985. Evolutionary faunas and the distribution of Paleozoic marine communities in space and time, p. 153190. In Valentine, J. W. (ed.), Phanerozoic Diversity Patterns: Profiles in Macroevolution. Princeton University Press, Princeton, New Jersey.Google Scholar
Sepkoski, J. J. Jr., and Sheehan, P. M. 1983. Diversification, faunal change, and community replacement during the Ordovician radiations, p. 673717. In Tevesz, M. J. S. and McCall, P. L. (eds.), Biotic Interactions in Recent and Fossil Benthic Communities. Plenum Press, New York.Google Scholar
Simms, M. J. 1994. Reinterpretation of thecal plate homology and phylogeny in the Class Crinoidea. Lethaia, 26:303312.Google Scholar
Smith, A. B. 1986. Cambrian eleutherozoan echinoderms and the early diversification of edrioasteroids. Palaeontology, 28:715756.Google Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in Early Palaeozoic echinoderms. Palaeontology, 31:799828.Google Scholar
Smith, A. B., and Jell, P. A. 1990. Cambrian edrioasteroids from Australia and the origin of starfishes. Memoirs of the Queensland Museum, 28:715778.Google Scholar
Smith, A. B., and Paul, C. R. C. 1982. Revision of the class Cyclocystoidea (Echinodermata). Philosophical Transactions of the Royal Society of London, B296:577684.Google Scholar
Sokolov, B. S., and Fedonkin, M. A. 1984. The Vendian as the terminal system of the Precambrian. Episodes, 7:1219.Google Scholar
Sprinkle, J. 1971. Stratigraphic distribution of echinoderm plates in the Antelope Valley Limestone of Nevada and California. U.S. Geological Survey Professional Paper 750-D:D89D98.Google Scholar
Sprinkle, J. 1973. Morphology and Evolution of Blastozoan Echinoderms. Museum of Comparative Zoology, Harvard University, Special Publication, 283, p.Google Scholar
Sprinkle, J. 1974. New rhombiferan cystoids from the Middle Ordovician of Nevada. Journal of Paleontology, 48:11741201.Google Scholar
Sprinkle, J. 1976. Biostratigraphy and paleoecology of Cambrian echinoderms from the Rocky Mountains. Brigham Young University Geology Studies, 23:6173.Google Scholar
Sprinkle, J. 1980a. An overview of the fossil record, p. 1526. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms, Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Sprinkle, J. 1980b. Early diversification, p. 8693. In Broadhead, T. W. and Waters, J. A. (eds.), Echinoderms, Notes for a Short Course. University of Tennessee Department of Geological Sciences, Studies in Geology, 3.Google Scholar
Sprinkle, J. 1980c. Origin of Mastoids: new look at an old problem. Geological Society of America Abstracts with Programs, 12:528.Google Scholar
Sprinkle, J. (ed.). 1982. Echinoderm Faunas from the Bromide Formation (Middle Ordovician) of Oklahoma. University of Kansas Paleontological Contributions Monograph, 1, 369 p.Google Scholar
Sprinkle, J. 1989. Origin of the echinoderm class Rhombifera based on new Early Ordovician discoveries from the Rocky Mountains. Geological Society of America Abstracts with Programs, 21:A114.Google Scholar
Sprinkle, J. 1992. Radiation of Echinodermata, p. 375398. In Lipps, J. H. and Signor, P. W. (eds.), Origin and Early Evolution of the Metazoa. Plenum Press, New York.Google Scholar
Sprinkle, J. 1995. Do eocrinoids belong to the Cambrian or to the Paleozoic Evolutionary Fauna?, p. 397400. In Cooper, J. D., Droser, M. L., and Finney, S. C. (eds.), Ordovician Odyssey: Short Papers for the Seventh International Symposium on the Ordovician System. Pacific Section—SEPM, Book 77.Google Scholar
Sprinkle, J., and Bell, B. M. 1978. Paedomorphosis in edrioasteroid echinoderms. Paleobiology, 4:8288.Google Scholar
Sprinkle, J., and Collins, D. E. 1995. Echmatocrinus revisited: still an echinoderm and probably the earliest crinoid. Geological Society of America Abstracts with Programs, 27:A-113–114.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1993. Between evolutionary faunas: comparison of Late Cambrian and Early Ordovician echinoderms and their paleoenvironments. Geological Society of America Abstracts with Programs, 25(5):149.Google Scholar
Sprinkle, J., and Guensburg, T. E. 1995. Origin of echinoderms in the Paleozoic Evolutionary Fauna: the role of substrates. Palaios, 10:437453.Google Scholar
Sprinkle, J., Guensburg, T. E., and Sumrall, C. D. 1996. Revising the rhombiferan radiation: a new look at morphology, diversity, phylogeny, and paleoecology, p. 368. In Repetski, J. E. (ed.), Sixth North American Paleontological Convention Abstracts of Papers. Paleontological Society Special Publication, 8.Google Scholar
Sumrall, C. D. 1996. A Phylogenetic Analysis of Echinodermata Based on Primitive Fossil Taxa. Unpublished Ph.D. Dissertation, University of Texas at Austin, 360 p.Google Scholar
Sumrall, C. D., Sprinkle, J., and Guensburg, T. E. In press. New Late Cambrian echinoderms from the Rocky Mountains. Journal of Paleontology, 71.Google Scholar
Ubaghs, G. 1963. Cothurnocystis Bather, Phyllocystis Thoral and an undetermined member of the Order Soluta (Echinodermata, Carpoidea) in the uppermost Cambrian of Nevada. Journal of Paleontology, 37:11331142.Google Scholar
Ubaghs, G. 1969. Aethocrinus moorei Ubaghs, n. gen., n. sp., le plus ancien crinoide dicyclique connu. University of Kansas Paleontological Contributions Paper, 38:125.Google Scholar
Ubaghs, G. 1979. Trois Mitrata (Echinodermata: Stylophora) nouveaux de l'Ordovicien de Tchecoslovaquie. Palaontologische Zeitschrift, 53:98119.Google Scholar
Ubaghs, G. 1994. Echinodermes nouveaux (Stylophora, Eocrinoidea) de l'Ordovicien Inferieur de la Montagne Noire (France). Annates de Paleontologie, 80:107141.Google Scholar
Ubaghs, G., and Robison, R. A. 1985. A new homoiostelean and a new eocrinoid from the Middle Cambrian of Utah. University of Kansas Paleontological Contributions Paper, 115:124.Google Scholar
Ubaghs, G., and Robison, R. A. 1988. Homalozoan echinoderms of the Wheeler Formation (Middle Cambrian) of western Utah. University of Kansas Paleontological Contributions Paper, 120:117.Google Scholar
Wilson, M. A., palmer, T. J., Guensburg, T. E., Finton, C. D., and Kaufman, L. E. 1992. The development of an Early Ordovician hardground community in response to rapid sea-floor calcite precipitation. Lethaia, 25:1934.Google Scholar
Witzke, B. J., and Strimple, H. L. 1981. Early Silurian camerate crinoids of eastern Iowa. Proceedings of the Iowa Academy of Science, 88:101137.Google Scholar