Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-09T13:31:51.859Z Has data issue: false hasContentIssue false

Early Mesozoic Terrestrial Ecosystems: Faunal Changes Among Vertebrates

Published online by Cambridge University Press:  21 July 2017

Nicholas C. Fraser*
Affiliation:
Virginia Museum of Natural History, 1001 Douglas Avenue, Martinsville, VA 24112 USA
Get access

Extract

The past decade has seen many advances in research on vertebrate faunas of the Triassic period. The end of the Triassic now is cited widely as the dawn of modern terrestrial ecosystems, and currently the earliest mammals, turtles, lissamphibians (frogs, toads and salamanders), lizards, and crocodiles are all documented from this period. Admittedly many of these early members of present day higher order taxa were very different from their modern counterparts. For instance, the earliest crocodiles were highly active cursorial forms (e.g., Crush, 1984), and the mammals were very different to the living placentals and marsupials. Nevertheless, they possessed many of the key morphological characteristics that diagnose the group and that may well have contributed to their ultimate success. However, the Triassic was also a time of bizarre and enigmatic tetrapods, some of whose relationships are the subject of considerable debate. Indeed, in the last year this debate has reached new heights with suggestions that certain rather unusual Triassic non-dinosaurian tetrapods may have more bearing on bird origins than theropod dinosaurs. This debate has been fueled by the discoveries of feathered dinosaurs from China which, on the face of it, one might expect to dampen the search for alternative hypotheses regarding bird origins.

Type
Research Article
Copyright
Copyright © 2000 by the Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, J. M., and Anderson, H. M. 1993a. Terrestrial flora and fauna of the Gondwana Triassic: Part 1 Occurrences, p. 312 In Lucas, S. G. and Morales, M. (eds.) The nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3.Google Scholar
Anderson, J. M., and Anderson, H. M. 1993b. Terrestrial flora and fauna of the Gondwana Triassic: Part 1 Co-evolution, p. 1325 In Lucas, S. G. and Morales, M. (eds.) The nonmarine Triassic. New Mexico Museum of Natural History and Science Bulletin 3.Google Scholar
Ash, S. and Creber, G.T. 1990. Paleoclimatic interpretation of the wood structure of the treesin Petrified Forest National Park, Arizona: A progress report. Geological Society of America, Cordilleram section, Abstracts with Programs, 22: 4.Google Scholar
Barghusen, H. R. and Hopson, J. A. 1970. Dentary-squamosal joint and the origin of mammals. Science, 168: 573575.Google Scholar
Benton, M. J. 1983a. Dinosaur success in the Triassic: a non-competitive ecological model. Quarterly Review of Biology, 58:2955.CrossRefGoogle Scholar
Benton, M. J. 1983b. The Triassic reptile Hyperodapedon from Elgin: functional morphology and relationships. Philosophical Transactions of the Royal Society of London B, 302: 605720.Google Scholar
Benton, M. J. 1986. The Late Triassic tetrapod extinction events, p. 303320 In Padian, K. (ed.) The Beginning of the Age of Dinosaurs: Faunal Change across the Triassic-Jurassic boundary. Cambridge University Press, New York.Google Scholar
Benton, M. J. 1987. Progress and competition in macroevolution. Biological Reviews, 62: 305338.Google Scholar
Benton, M. J. 1990. Vertebrate Palaeontology. Unwin-Hyman, London, 377p.Google Scholar
Benton, M. J. 1991. What really happened in the Late Triassic? Historical Biology, 5: 263278.CrossRefGoogle Scholar
Benton, M. J. 1994. Late Triassic to Middle Jurassic extinctions among continental tetrapods: testing the pattern, p. 366397 In Fraser, N. C. and Sues, H.-D. (eds.). In the shadow of the dinosaurs. Cambridge University Press, New York.Google Scholar
Benton, M. J. 1999. Schleromochlus taylori and the origin of dinosaurs and pterosaurs. Philosophical Transactions of the Royal Society of London B, 354: 14231446.Google Scholar
Berman, D. S. and Reisz, R. 1992. Dolabrosaurus aquitalis, a small lepidosauromorph reptile from the Upper Triassic Chinle Formation of North central New Mexico. Journal of Paleontology, 66: 10011009.Google Scholar
Bonaparte, J. F. 1966. Chronological survey of the tetrapod-bearing Triassic of Argentina. Breviora, 251: 113.Google Scholar
Cairncross, B., Anderson, J. M., and Anderson, H. M. 1995. Palaeoecology of the Triassic Molteno Formation, Karoo Basin, South Africa—sedimentological and palaeontological evidence. South African Journal of Geology, 98: 452478.Google Scholar
Camp, C. L. and Welles, S. P. 1956. Triassic dicynodont reptiles. Part 1. Memoirs of the University of California, 13:255341.Google Scholar
Calzavara, M., Muscio, G., and Wild, R. 1981. Megalancosaurus preonensis n.g., n.sp., a new reptile from the Norian of Friuli, Italy. Gortania, 2: 4964.Google Scholar
Cooper, M. R. 1982. A mid-Permian to earliest Jurassic tetrapod biostratigraphy and its significance. Arnoldia Zimbabwe, 9:77104.Google Scholar
Chatterjee, S. 1978. A primitive parasuchid (phytosaur) reptile from the Upper Triassic Maleri Formation of India. Philosophical Transactions of the Royal Society of London B, 267: 209261.Google Scholar
Chatterjee, S. 1980. The evolution of the rhynchosaurs. Memoires Societé geologique France, 139: 5765.Google Scholar
Chatterjee, S., and Roy-Chowdhury, T. 1974. Triassic Gondwana vertebrates from India. Indian Journal of Earth Sciences, 1:96112.Google Scholar
Cousminer, H. L., and Manspeizer, W. 1976. Triassic pollen date Moroccan High Atlas and the incipient rifting of Pangea as middle Carnian. Science, 191: 943945.Google Scholar
Crompton, A. W. and Jenkins, F. A. Jr. 1979. Origin of mammals, p. 5972 In Lillegraven, J. A., Kielan-Jaworowska, Z. and Clemens, W. A. (eds.). Mesozoic Mammals: the first two-thirds of mammalian history. University of California Press, Berkeley.Google Scholar
Crompton, A. W. and Luo, Z. 1993. Relationships of the Liassic mammals, Sinoconodon, Morganucodon oehleri, and Dinnetherium , p. 3044 In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.). Mammal phylogeny. Springer-Verlag, New York.Google Scholar
Crush, P. J. 1984. A late Triassic sphenosuchid crocodilian from Wales. Palaeontology, 34: 131157.Google Scholar
Dobruskina, I. A. 1995. Keuper (Triassic) flora from middle Asia (Madygen, Southern Fergana). New Mexico Museum of Natural History and Science Bulletin, 5: 149, xlvi p1.Google Scholar
Erwin, D.H. 1993 The Great Paleozoic Crisis: Life and Death in the Permian. Columbia University Press, New York, 327p.Google Scholar
Flynn, J. J., Parrish, J. M., Rakotosamimanana, B., Simpson, W.F., Whatley, R. L. and Wyss, A. R. 1999. A Triassic fauna from Madagascar, including early dinosaurs. Science, 286: 763765.Google Scholar
Fraser, N. C. 1985. Vertebrate faunas from Mesozoic fissure deposits of Southwest Britain. Modern Geology, 9: 273300.Google Scholar
Fraser, N. C., Grimaldi, D. A., Olsen, P. E. and Axsmith, B. 1996. A Triassic lagerstätte from eastern North America. Nature, 380: 615619.Google Scholar
Fraser, N. C., Grimaldi, D. A., Olsen, P. E. and Axsmith, B. 1997. Who else lived in the Late Triassic?—The world of the early dinosaurs as illustrated by a fossil lagerstaette in Virginia, p. 191198 In Wolberg, D. I., Stump, E., and Rosenberg, G. D. (eds.). Dinofest International: Proceedings of a symposium held at Arizona State University. Academy of Natural Sciences, Philadelphia.Google Scholar
Fraser, N. C., and Sues, H.-D. 1994. In the shadow of the dinosaurs. Cambridge University Press, New York, 435p.Google Scholar
Gauthier, J. A. 1986. Saurischian monophyly and the origin of birds. California Academy of Sciences, 8: 155.Google Scholar
Grauvogel-Stamm, L., and Kelber, K.-P. 1996. Plant-insect interactions and coevolution during the Triassic in western Europe, p. 523 In Gall, J.-C. (ed.). Triassic insects of western Europe. Paleontologia Lombarda, 5.Google Scholar
Haubold, H., and Buffetaut, E. 1987. Une nouvelle interpretation de Logisquama insignis, retile enigmatique du Trias Superieur d'Asie Centrale. Compte rendùs de L'Academie des Science de Paris, 305: 6570.Google Scholar
Heckert, A.B., and Lucas, S.G. 2000. Taxonomy, phylogeny, biostratigraphy, biochronology, paleobiogeography, and evolution of the Late Triassic Aetosauria (Archosauria: Crurotarsi). Zentralblatt fur Geologie und Palaontologie, 1998: 15391587.Google Scholar
Hopson, J. A. 1969. The origin and adaptive radiation of mammal-like reptiles and nontherian mammals. Annals of the New York Academy of Sciences, 167: 199216.Google Scholar
Hopson, J. A., and Barghusen, H. R. 1986. An analysis of therapsid relationships, p. 83106 In Hotton, N. III. MacLean, P. D., Roth, J. J., and Roth, E. C. (eds.). The Ecology and Biology of mammal-like reptiles. Smithsonian Institution Press, Washington, D.C. Google Scholar
Hopson, J. A., and Crompton, A. W. 1969. Origin of mammals. Evolutionary Biology, 3: 1572.Google Scholar
Huber, P., Lucas, S. G. and Hunt, A. P. 1993. Vertebrate biochronology of the Newark Supergroup Triassic, eastern North America. New Mexico Museum of Natural History and Science Bulletin, 3: 179186.Google Scholar
Kemp, T. S. 1982. Mammal-like reptiles and the origin of mammals. Academic Press, London.Google Scholar
Kemp, T. S., 1983. The relationships of mammals. Zoological Journal of the Linnean Society of London, 77: 353384.Google Scholar
Kent, D. V., Olsen, P. E. and Witte, W. K. 1995. Late Triassic-Early Jurassic geomagnetic polar sequence and paleolatitudes from drill cores in the Newark rift basin (eastern North America). Journal of Geophysical Research, 100: 1496514998.Google Scholar
King, G. M. 1990. The Dicynodonts: a study in paleobiology. Chapman and Hall, London, 233p.Google Scholar
Lee, M. S. Y. 1997. A taxonomic revision of pareiasaurian reptiles: implications for Permian terrestrial palaeocology. Modern Geology, 21: 231298.Google Scholar
Lucas, S. G. 1993. Vertebrate biochronology of the Triassic of China. New Mexico Museum of Natural History and Science Bulletin, 3: 301306.Google Scholar
Lucas, S. G. 1998. Global Triassic tetrapod biostratigraphy and biochronology. Palaeogeography, Palaeoclimatology, Palaeoecology, 143: 347384.Google Scholar
Lucas, S. G., and Hunt, A. P. 1993. Tetrapod biochronology of the Chinle Group (Upper Triassic), western United States. New Mexico Museum of Natural History and Science Bulletin, 3: 327329.Google Scholar
Luo, Z. 1994. Sister-group relationships of mammals and transformations of diagnostic mammalian characters, p. 98128, In Fraser, N. C. and Sues, H.-D. (eds.). In the shadow of the dinosaurs. Cambridge University Press, New York.Google Scholar
Maxwell, W. D. 1992. Permian and Early Triassic extinction of non-marine tetrapods. Palaeontology, 35:571584.Google Scholar
Meyertons, C. T. 1963. Triassic formations of the Danville basin. Virginia Division of Mineral Resources, Report of Investigations, 6:165.Google Scholar
Milner, A. M. 1990. The radiation of temnospondyl amphibians, p. 321349 In Taylor, P. D. and Larwood, G. P. (eds.). Major Evolutionary radiations. Clarendon Press, Oxford.Google Scholar
Ochev, V. G. and Shiskin, M. A. 1989. On the principles of global correlation of the continental Triassic on the tetrapods. Acta Palaeontologica Polonica, 34: 149173.Google Scholar
Olsen, P. E. 1979. A new aquatic eosuchian from the Newark Supergroup (Late Triassic-Early Jurassic) of North Carolina and Virginia. Postilla, 176: 114.Google Scholar
Olsen, P. E. 1980. A comparison of vertebrate assemblages from the Newark and Hartford basins (early Mesozoic, Newark Supergroup) of eastern North America, p. 3553 In Jacobs, L.L. (ed.). aspects of Vertebrate History: essays in honor of Edwin Harris Colbert. Museum of Northern Arizona Press, Flagstaff.Google Scholar
Olsen, P. E., and Sues, H.-D. 1986. Correlation of continental Late Triassic and Early Jurassic sediments, and patterns of the Triassic-Jurassic tetrapod transition, p. 321351 In Padian, K. (ed.) The Beginning of the Age of Dinosaurs: Faunal Change across the Triassic-Jurassic boundary Cambridge University Press, New York.Google Scholar
Olsen, P. E., and Johansson, A. K. 1994. Field guide to Late Triassic tetrapod sites in Virginia and North Carolina, p. 408430 In Fraser, N. C. and Sues, H.-D. (eds.). In the shadow of the dinosaurs. Cambridge University Press, New York.Google Scholar
Olsen, P. E., Kent, D. V., Cornet, B., Witte, W. K. and Schlische, R. W. 1996. High resolution stratigraphy of the Newark rift basin (early Mesozoic, eastern North America). Geophysical Society of America Bulletin, 108:4077.Google Scholar
Olsen, P. E., Norell, M. A., Sues, H.-D and McDonald, N. G. 1996. Discovery of a small archosaur skull from the Lower New Haven Formation of the Hartford Basin, Connecticut, U.S.A., p. 35 In LeTourneau, P. M. and Olsen, P. E. (eds.), Aspects of Triassic-Jurassic rift basin Geoscience. State Geological and Natural History Survey of Connecticut, Miscellaneous Reports, 1.Google Scholar
Padian, K. 1983. A functional analysis of flying and walking pterosaurs. Paleobiology, 9: 218239.Google Scholar
Padian, K. 1984. The origin of pterosaurs, p. 163168 In Reif, W.-E. and Westphal, F. (eds.). Third symposium on Mesozoic Terrestrial Ecosystems. Attempto Verlag, Tübingen.Google Scholar
Parrish, J. M. 1993. Phylogeny of the Crocodylotarsi, with reference to archosaurian and crurotarsan monophyly. Journal of Vertebrate Paleontology, 13: 287308.Google Scholar
Parrish, J. M., Parrish, J. T., and Ziegler, A. M. 1986. Permian-Triassic paleogeography and paleoclimatology and implications for therapsid distributions, p. 109132 In Hotton, N. H. III, MacLean, P. D., Roth, J. J., and Roth, E. C. (eds.). The biology and ecology of mammal-like reptiles. Smithsonian Press, Washington, D. C. Google Scholar
Parrish, J. T. 1993. Climate of the Supercontinent Pangea. Journal of Geology, 101: 215233.Google Scholar
Parrish, J. T. 1998. Interpreting Pre-Quarternary Climate from the Geologic Record. Columbia University Press, New York, 338p.Google Scholar
Pinna, G. 1984. Osteolgia di Drepanosaurus unguicaudatus Lepidosauro triassico del Sottordine Lacertilia. Memoire della Società Italiana di scienze Naturali, 24: 728.Google Scholar
Reisz, R. R. and Laurin, M. 1991. Owenetta and the origin of turtles. Nature, 349: 324326.Google Scholar
Renesto, S. and Lombardo, C. 1999. Structure of the tail of a phytosaur (Reptilia, Archosauria) from the Norian (Late Triassic) of Lombardy (Northern Italy). Rivista Italiana di Paleontologia e Statigrafia, 105: 135144.Google Scholar
Renesto, S., and Paganoni, A. 1995. A new Drepanosaurus (Reptilia, Neodiapsida) from the Upper Triassic of Northern Italy. Neues Jahrbuch Geologie Palaontologie Abhandlungen, 197: 8799.Google Scholar
Romer, A. S. 1975. Intercontinental correlations of Triassic Gondwana vertebrate faunas, p. 469473 In Campbell, K. S. N. (ed.). Gondwana Geology. Australian National University Press, Canberra.Google Scholar
Rowe, T. 1988. Definition, diagnosis and origin of Mammalia. Journal of Vertebrate Paleontology, 8: 241264.CrossRefGoogle Scholar
Ruben, J. A. 1998. Gliding adaptations in the Triassic archosaur Megalancosaurus . Journal of Vertebrate Paleontology, 18 Supplement to 3:73A.Google Scholar
Schröder, B. 1982. Entwicklung des Sedimentbeckens und Stratigraphie der klassischen Germanischen Trias. Geologische Rundshau, 71: 783794.Google Scholar
Sereno, P.C. 1991. Basal Archosaurs: phylogenetic relationships and functional implications. Society of Vertebrate Paleontology Memoir, 2: 153.Google Scholar
Sharov, A. G. 1971. New flying Reptilia from the Mesozoic of Kazakhstan and Kirgizia. Trudy PIN AN SSSR, 130: 104113. [Russian].Google Scholar
Shubin, N. H., Crompton, A. W., Sues, H.-D., and Olsen, P. E. 1991. New fossil evidence on the sister-group of mammals and early Mesozoic faunal distribution. Science, 251: 10631065.Google Scholar
Simms, M.J., Ruffell, A. H. and Johnson, A. L. A. 1994. Biotic and climatic changes in the Carnian (Triassic) of Europe and adjacent areas, p. 352365 In Fraser, N. C. and Sues, H.-D. (eds.). In the shadow of the dinosaurs. Cambridge University Press, New York.Google Scholar
Sues, H.-D. and Baird, D. D. 1993. A skull of a sphenodontian lepidosaur from the New Haven Arkose (Upper Triassic) of Connecticut. Journal of Vertebrate Paleontology, 13: 370372.Google Scholar
Sues, H.-D., Olsen, P. E., and Kroeler, P. A. 1994. Small tetrapods from the Upper Triassic of the Richmond basin (Newark Supergroup), Virginia, p. 161170.Google Scholar
Van Houten, F. B. 1982. Redbeds. McGraw-Hill Encyclopedia of Science and Technology, 5: 441442.Google Scholar
Veevers, J. J. 1989. Middle/Late Triassic (230+5 Ma) singularity in the stratigraphic and magmatic history of the Pangaean heat anomaly. Geology, 17: 784787.Google Scholar
Walkden, G.M. and Fraser, N. C. 1993. Late Triassic fissure sediments and vertebrate faunas: environmental change and faunal succession at Cromhall, South West Britain. Modern Geology, 18: 511535.Google Scholar
Weems, R. E. 1992. The “terminal Triassic catastrophic extinction event” in perspective: a review of Carboniferous through Early Jurassic terrestrial vertebrate extinction patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 94: 129.Google Scholar
Wible, J. R. 1991. Origin of Mammalia: the craniodental evidence re-examined. Journal of Vertebrate Paleontology, 11: 128.Google Scholar
Wible, J. R., and Hopson, J. A. 1993. Basicranial evidence for early mammal phylogeny, p. 4562 In Szalay, F. S., Novacek, M. J., and McKenna, M. C. (eds.). Mammal phylogeny. Springer-Verlag, New York.Google Scholar
Ziegler, A. M., and McKerrow, W. S. 1975. Silurian marine red beds. American Journal of Science, 275: 3156.Google Scholar